Gebaude / Objek	Baujahr	
Vitu	1911	
Nutzung		
Grundschule, Ve	ereine, Hausmeist	erwonnung
Grundschule, Von	BRI	Geschosse

Denkmal	
nein	

Anmerkungen

Wasserverbrauch mit Turnhalle

Verbrauchsdaten (witterungsbereinigt)

Jahr	2007	2008	2009	Durchschnitt
Strom	8.397 kWh	8.240 kWh	7.246 kWh	7.961 kWh
Wärme	186.934 kWh	230.380 kWh	205.021 kWh	207.445 kWh
Wasser	311 m³	334 m³	307 m ³	317 m ³

jährl.CO2-Emission	
5.039 kg	
50.617 kg	
gesamt	
55.656 kg	

Vergleich mit Verbrauchskennwerten EnEV 2009

Jahr	pro m ² NGF	EnEV 2009
Strom	6 kWh	10 kWh
Wärme	147 kWh	105 kWh
Wasser	0,2 m ³	

Wertung	
EnEV	-43%
EnEV	+40%

Energetische Bewertung der Bauteile

Bauteil	Beschreibung	BJ	Fläche	U-Wert		Verlust [W/K]
Außenwand	70cm Mauerwerk, ungedämmt	1911	729 m ²	1,50 W/m ² K	1	1093
Fenster	2-fach Holz		158 m ²	2,70 W/m ² K	1	426
Fenster	3-fach Kunststoff, WSV	2007-2009	11 m ²	1,20 W/m ² K	1	13
Außentür	Holz		15 m ²	2,70 W/m ² K	1	41
Bodenplatte	ungedämmt	1911	437 m ²	2,50 W/m ² K	0,25	273
Dach	ungedämmt	1911	204 m ²	2,60 W/m ² K	1	530
oberste Decke	Schlackefüllung	1911	437 m ²	1,00 W/m ² K	0,8	350
Fenster	Kunststoff 2-fach WSV		94, m ²	1,90 W/m ² K	1	179

überschlägiger Wärmebedarf

244.089 kWh/a

Energieerzeuger	BJ	Nennleistung	Energieträger	Anmerkung	
Brennwertkesse	1998	120 kW	Erdgas	gas hoher Wirkungsgrad der Kes	
Zustand Leitungen F	leizraum		Zustan	d Pumpen Heizraum	
	gut gedäm	mt		neu, gut gedämmt	
Systemtemperatur	Re	gelung	•	Wärmeübergabe	
VL RL		Thermostatventile		Heizkörper	

Trinkwassererwärmung

Energieerzeuger	BJ	Nennleistung	Energieträger	Anmerkung		
zentral	1998		Erdgas			
Anmerkungen						
Heizung und Trinkwas	Heizung und Trinkwassererwärmung kombiniert					

Beleuchtung

Beschreibung	Einsparpotential
überwiegend neue Leuchtstoffröhren mit Spiegelreflektoren, manuell schaltbar,	10%
Bewegungsmelder in Fluren und WCs	

Lüftung

Art der Lüftung	WRG			
Fensterlüftung				
Einschätzung zur Luftdichtheit des Gebäudes				
keine offensichtlichen Undichtigkeiten erkennbar				

Übersicht

	Verbrauch Bestand	Einsparpotential	Brennstoffechsel	Verbrauch saniert*	CO2-Einsparung
Strom	7.961 kWh/a	10%		7.165 kWh/a	504 kg/a
Wärme	207.445 kWh/a	67%	ohne	69.337 kWh/a	33.698 kg/a
Wasser	317 m³/a				

34.202 kg/a

Sanierungskosten	659.000€	(rein energetisch, netto, ohne Nk)	
Bauteil	Kosten	Beschreibung	U-Wert empfohlen
Außenwand	80.000€	Innendämmung, Ausmauern Heizkörpernischen	0,35 W/m ² K
Fenster	170.000€	Ersetzen der alten Holzfenster	$1,00 \text{ W/m}^2\text{K}$
oberste Decke	35.000€	Dämmung	0,20 W/m ² K
Dach	35.000€	Dämmung von innen	0,20 W/m ² K
Tür	30.000€	Ersetzen	1,00 W/m ² K
Lüftung	98.000€	Einbau einer Lüftungsanlage mit WRG	
Heizkörper	90.000€	Ersetzen durch Wandheizflächen, Temperierung	
Beleuchtung	11.000€		

^{*} der überschläg berechnete Bedarf wird hierzu im gleichen Verhältnis angepasst, wie Bedarf/Verbrauch im Bestand

textliche Zusammenfassung

Beschreibung:

Die Vitusschule wurde 1911 errichtet und dient der Gemeinde als Grundschule mit insgesamt vier Klassen. Sie enthält neben den Schulräumen noch eine Hausmeisterwohnung im Kellergeschoss und Räume von Musikschule und Vereinen im Dachgeschoss. Der Spitzboden darüber ist nicht ausgebaut. Die Außenwände bestehen aus ca. 70 cm dickem, ungedämmten Mauerwerk. Von den zweifach verglasten Holzfenster wurden einige in den Jahren 2007 bis 2009 durch Kunststofffenster mit z.T. Drei-Scheiben-Wärmeschutzverglasung ersetzt. Die oberste Geschossdecke ist mit ca. 8 cm Schlacke aufgefüllt, das Dach ist ungedämmt. Erwähnenswert sind die noch vorhandenen Lüftungskamine, die bei Gebäuden dieser Zeit häufiger vorzufinden sind. Sie wurden zur kontrollierten Be- und Entlüftung der Klassenräume eingesetzt. Die Kamine der Vitusschule sind heute nicht mehr funktionsfähig, wahrscheinlich werden sie als Kabelschächte verwendet. Beheizt wird das Gebäude mit einem Gasbrennwertkessel mit einer Nennleistung von 120 kW und einem Gas-Niedertemperaturkessel mit einer Nennleistung von 26 bis 47 kW zur Abdeckung von Bedarfsspitzen. Beide Kessel arbeiten mit einem hohen Wirkungsgrad. Die Beleuchtung wurde zum Großteil in den letzten Jahren erneuert. In den Klassenzimmern befinden sich Leuchtstoffröhren mit Spiegelreflektoren, die Flure und WC's sind mit Bewegungsmeldern ausgestattet. Ein Problem stellt die Hausmeisterwohnung im Kellergeschoss dar, da hier die Wände besonders im Sommer feucht werden. Allgemein ist anzumerken, das immer wieder Teile des Gebäudes erneuert werden, jedoch kein Gesamtkonzept zur Sanierung verfolgt wird. Der vorbeugenden bauliche Brandschutz ist zu prüfen, da ein einziges Treppenahsu ohne klassifizierte Abtrennung vorliegt und der zweite baul. Rettungsweg nicht gegeben ist.

Verbrauchsanalyse:

Der Wert für den Heizwärmeverbrauch liegt wie erwartet über dem der EnEV2009; dies liegt vor allem an den ungedämmten Außenwänden so wie dem ungedämmten oberen Gebäudeabschluss (obere Geschossdecke bzw. Dach). Aufgrund der neuen Beleuchtung, sowie der natürlichen Belichtung ist der Stromverbrauch sehr gering und liegt deutlich unter dem Vergleichswert der EnEV 2009.

Maßnahmen:

Auch wenn das Gebäude nicht unter Denkmalschutz steht, sollte aufgrund des bauzeitlich hochwertigen Erscheinungsbildes auf eine Außendämmung verzichtet werden. Stattdessen ist eine innenliegende Dämmung mit einem diffusionsoffenen und gegebenenfalls kapillaraktiven System zu empfehlen, so dass neben dem Wärmeschutz auch die Bauphysik zur Vermeidung von Bauschäden beachtet wird. Hierbei sind bei unvermeidbaren Wärmebrücken Temperierleitungen zur Schadensfreihaltung zu empfehlen. Die bestehenden zweifach-verglasten Fenster sollten durch 3-fach verglaste Fenster mit einem Uw<=1,0W/m²K ausgetauscht werden. Die Dämmung der Fensterlaibungen ist zur Vermeidung von Wärmebrücken ebenfalls sehr wichtig. Die oberste Geschossdecke sollte mit mindestens 20cm Dämmung versehen werden, die Dachflächen über beheizten Räumen ebenfalls. Der Übergang von Geschossdecke zu Dach ist möglichst wärmebrückenfrei auszuführen. Zur Verringerung der Lüftungswärmeverluste ist eine passivhaustaugliche Lüftungsanlage mit WRG > 80% sinnvoll. Hierbei sollte geprüft werden, ob die Nutzung der bestehenden Lüftungskanale zur Leitungsführung möglich ist, so dass ein kostengünstiges Leitungssystem aufgebaut werden kann.

Zur Wärmeübergabe eignen sich in Kombination mit einer Innendämmung besonders Wandheizflächen. Dabei kann der Rücklauf als Temperierung genutzt werden. (Empfohlene U-Werte: s. Seite 2 Tabelle)

Zusammenfassung:

Die Vitusschule gehört mit einem Einsparpotential von über 50% CO2 zu den gut zu sanierenden Gebäuden. Weiterhin sind die Sanierungskosten (rein energetisch) recht niedrig. Da aber aufgrund der Innendämmung in den Innenraum des Gebäudes eingegriffen wird, sind die entstehenden Gesamtkosten mit anfallenden Sowieso-Maßnahmen zu vergleichen. Eine Sanierung in näherer Zukunft ist hier empfehlenswert. Aufgrund der sowieso nötigen Sanierungsmaßnahmen (Brandschutz, Modernisierung, ...) und den Eingriffen in Inneren durch Innendämmung, Lüftung, usw. ist hier eine Gesamtmaßnahme anzustreben. Dabei können aufgrund des sicherlich erreichbaren Generalsanierungsstatus bayerische FAG-Mitte beansprucht werden.

Foto 1: Detail Fassade

Foto 3: Detail Holzfenster

Foto 5: Flur

Foto 2: Detail Haupteingang

Foto 4: Detail neue Kunststofffenster, 3-fach verglast

Foto 6: Klassenzimmer

Foto 7: Beleuchtung in den Klassenzimmern

Foto 9: Heizkörper im Flur

Foto 11: Vereinsraum im DG

Foto 8: Beleuchtung mit Bewegungsmelder in den WC's

Foto 10: Heizkörper im Klassenzimmer

Foto 12: Spitzboden, Dachaufbau

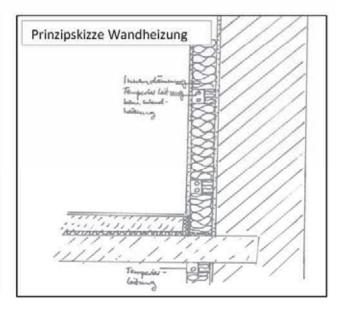
Foto 13: Detail Gauben

Foto 15: feuchte Wand im Kellergeschoss

Foto 17: alter Lüftungskamin

Foto 14: Detail Fassade Dachgeschoss

Foto 16: Gaskessel


Foto 18: Decke im Eingangsbereich

Detailaufnahme

Durch eine Verlegung von Heizrohren in der Außenwand kann, abhängig von der benötigten Heizleistung, eine Zwischenlösung zwischen Wandtemperierung und Wandheizfläche eingebaut werden. Durch bewusste Positionierung an den bauphysikalisch kritischen Punkten (Wärmebrücken) können Bauschäden verhindert werden. Je nach benötigter Leistung und vorhandener Wandfläche können die Heizrohre in verscheiden großen Abständen einfach oder mehrfach verlegt, angebracht werden.

Der Übergang des Daches in die Mansarde ist ein wichtiger Detailpunkt, da hier die Dämmung der Kehlbalkenlage in die Dachdämmung übergeht. Hier ist die Vermeidung von Wärmebrücke ebenso wichtig wie die Luftdichtheit v.a. der Anschlusspunkte. Grundsätzlich ist zur Vermeidung der Wärmebrücken eine Kombination von Zwischensparren /- balkendämmung und Aufdämmung vorteilhaft, im Bereich das Daches kann dies aber duch die Erhöhung des Dachaufbaus neue Anschlüsse notwendig machen.

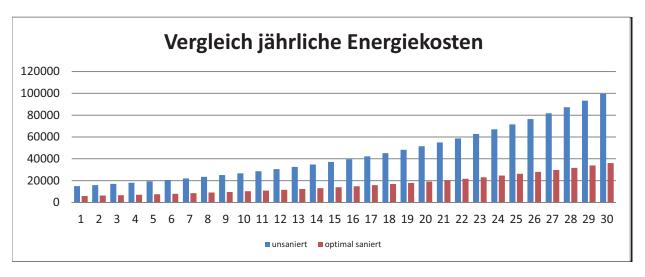
Bei Innendämmungen ist die Fensterlaibung ein zu lösender Detailpunkt. Die größere Laibungstiefe sowie die notwendige Vermeidung von Wärmebrücken erschweren bei Innendämmungen diesen Punkt deutlich. Eine mögliche Lösung ist die Ausbildung von Vitrinenfenstern (s. Rathaus). Diese Variante muss allerdings bei Schulnutzung besonders überdacht werden, da die Öffnung der Fenster erschwert wird. Evtl. ist es sinnvoll je Klassenraum ein "einfach" zu öffnendes Fenster vorzusehen.

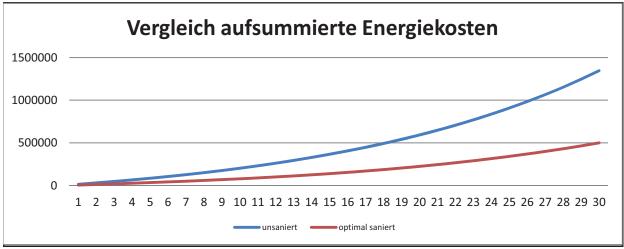
Energiebilanz IST-Zustand

Objekt (Art, Bez.) Vitusschule	
Energiekennwerte vor und nach der Sanierur für einen vergleichbaren Neubau)	ng (Planwerte gemäß Berechnungen nach EnEV / DIN 18599
NGF, Summe der beheizten Räume	1407_ m²
Jahres-Heizwärmebedarf Q _h vor Sanierung	Nutzenergie 195,7 kWh/m²a
nach Sanierung	46,1 kWh/m²a - 76 %
Trinkwasser-Energiebedarf Q _{TW}	Nutzenergie
vor Sanierung	0,0_ kWh/m²a
nach Sanierung	0,0 kWh/m²a
Sonstiger Endenergiebedarf	
Beleuchtung vor Sanierung	5,7 kWh/m²a nach Sanierung 4,3 kWh/m²a
Lüftung vor Sanierung	0,0 kWh/m²a nach Sanierung 7,1 kWh/m²a
Klimatisierung vor Sanierung	0,0 kWh/m²a nach Sanierung 0,0 kWh/m²a
Kühlung vor Sanierung	0,0 kWh/m²a nach Sanierung 0,0 kWh/m²a
Jahres-Endenergiebedarf Q _E "	Endenergie
vor Sanierung	248,5 kWh/m²a
nach Sanierung	71,5 kWh/m²a - 71 %
Jahres-Primärenergiebedarf Q _P "	Primärenergie
vor Sanierung	257,1 kWh/m²a
nach Sanierung	97,3 kWh/m²a - 62 %
Höchstwert nach EnEV-Neubau	109,3_ kWh/m²a
Unterschreitung des Höchstwertes um	11%
spez. Transmissionswärmeverlust H _T '	(bezogen auf Gebäudehüllfläche A _B)
vor Sanierung	1,411_ W/m²K
nach Sanierung	0,466_ W/m²K - 67 %
eingesparte CO₂-Emissionen	
vor Sanierung	81.521 kg / a
nach Sanierung	<u>29.057</u> kg / a - 64 %
DIN 18599 bilanziert mit der Software:	BKI Version 8.2.2, http://www.lop.de EnEV 2009

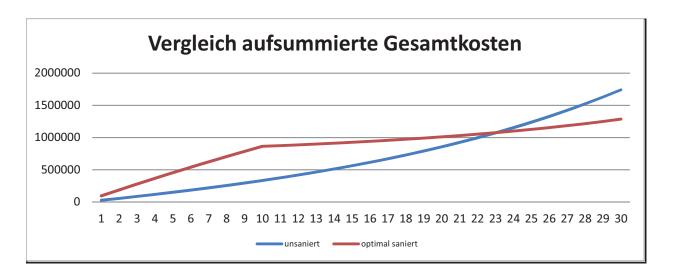
nicht investive Energiesparmaßnahmen

Maßnahme	Beschreibung	Einsparpotential	Einsparung CO ₂
Windfang	Türen schließen, Windfang als Pufferzone		
	nutzen		
Temperatur- absenkung	in den Fluren und im Treppenhaus		
Beleuchtung	Ausschalten bei Verlassen der Klassenzimme	er	
Fenster	in der Heizperiode nicht kippen, kontrolliere kurzzeitige Querlüftung	2,	


Wirtschaftlichkeitsbewertung


	Energiekosten /Jahr	Energiekosten über 30 Jahre	Gesamtkosten über 30 Jahre
unsaniert	14.900€	1.346.000 €	1.742.000 €
optimiert	5.850€	500.000€	1.286.000€

Erläuterung:


Für die Wirtschaftlichkeitsberechnungen wurde der tatsächliche Verbrauch im unsanierten Zustand und der über das Einsparpotential ermittelte "Verbrauch" der sanierten Variante als Grundlage genommen. Zur Ermittlung der heutigen Energiekosten wurde für Strom ein Preis von 19 ct /kWh, für Gas 6 ct /kWh angenommen.

Es wurden ein üblicher Zinsatz von 3,5% und keine Förderungen (kfw, Map,FAG) zu Grunde gelegt. Bei Annahme einer Förderung können deutlich frühere Amortisationszeiten erreicht werden. In der Bestandsvariante wurde mit einem zusätzlichen Bauunterhalt von 2% der Sanierungskosten gerechnet. Es wurde mit Preissteigerungen von 4 % für Strom und 7% für Erdgas gerechnet. Betrachtet wurde ein Zeitraum von 30 Jahren.

Gebäude / Obje	Baujahr ca. 1960		
Nutzung Turnhalle		1,	
NGF	BRI	Geschosse	
440 m ²	3.200 m ³	1	

Denkmal	
nein	

Anmerkungen

Wasserverbrauch im Verbrauch der Schule

Verbrauchsdaten (witterungsbereinigt)

Jahr	2007	2008	2009	Durchschnitt
Strom	3.975 kWh	4.531 kWh	4.372 kWh	4.293 kWh
Wärme	80.718 kWh	101.750 kWh	93.792 kWh	92.087 kWh
Wasser				

jährl.CO2-Emissio	n.
2.717 kg	
22.469 kg	
gesamt	
25.186 kg	

Vergleich mit Verbrauchskennwerten EnEV 2009

Jahr	pro m² NGF	EnEV 2009
Strom	10 kWh	35 kWh
Wärme	209 kWh	120 kWh
Wasser	0,0 m ³	

EnEV	-72%
EnEV	+74%

Energetische Bewertung der Bauteile

Bauteil	Beschreibung	BJ	Fläche	U-Wert		Verlust [W/K]
Außenwand	30cm Mauerwerk		452 m ²	1,00 W/m ² K	1	452
Fenster	2-fach Holz		140 m ²	2,70 W/m ² K	1	378
Fenster	einzelne Kunststoff,neu,2-fach		5 m ²	1,90 W/m ² K	1	10
Außentüren	Holz, Glas 2-fach		14 m ²	2,50 W/m ² K	1	36
oberste Decke	Annahme: bauzeitl.Dämmplatten	5	325 m ²	0,60 W/m ² K	0,8	156
Flachdächer	Annahme: bauzeitl.Dämmplatten	5	169 m ²	0,60 W/m ² K	1	101
Bodenplatte	Annahme: Beton		493 m ²	1,50 W/m2K	0,25	185

überschlägiger Wärmebedarf

92.258 kWh/a

Heizung

Energieerzeuger	BJ	Nennleistung	Energieträger	Anmerkung
Brennwertkessel	2007	48 kW Erdgas		Wirkungsgrad 98,1%
Zustand Leitungen He	izraum		Zustan	d Pumpen Heizraum
	gedämmt	t		gedämmt
Systemtemperatur	Regelung		A 17 12 1	Wärmeübergabe
VL RL				Umluftheizgeräte
Anmerkungen	.15			1. T.
hoher Wirkungsgrad	der Kesse	1		
noner wirkungsgrad	nei vesse			

Trinkwassererwärmung

Energieerzeuger	BJ	Nennleistung	Energieträger	Anmerkung
Durchlauferhitzer	2007	8,6-28 kW	Erdgas	bis 16,1 l/min
Anmerkungen				

Beleuchtung

Beschreibung	Einsparpotential
vor ca. 8 Jahren erneuert, Leuchtstoffröhren mit Reflektoren	10%

Lüftung

2474416	
Art der Lüftung	WRG
Fensterlüftung	
Einschätzung zur Luftdichtheit des Gebäudes	

Übersicht

	Verbrauch Bestand	Einsparpotential	Brennstoffechsel	Verbrauch saniert*	CO2-Einsparung
Strom	4.293 kWh	10%		3.863 kWh/a	272 kg/a
Wärme	92.087 kWh	58%	ohne	38.424 kWh/a	13.094 kg/a
Wasser					

13.365 kg/a

Sanierungskosten	342.000 €	(rein energetisch, netto, ohne Nk)	
Bauteil	Kosten	Beschreibung	U-Wert empfohlen
Außenwand	74.000 €	Dämmung, inkl. Putz + Frostschürze	0,20 W/m ² K
Fenster+ Türen	73.700€	Ersetzen	1,00 W/m ² K
Fenster	10.500€	z.T. aufmauern (Blendung, Kosten, Energie)	0,20 W/m ² K
oberste Decke	26.000€	Dämmung	$0,17 \text{ W/m}^2\text{K}$
Flachdächer	34.000€	Dämmung, inkl. Dachdeckung	0,14 W/m ² K
Beleuchtung	18.000€	Ersetzen	
Lüftung	30.800€	Lüftungsanlage mit WRG	
Heizung	17.600€	Übergabe an Lüftung	

 $^{^*\} der\ \ddot{u}berschläg\ berechnete\ Bedarf\ wird\ hierzu\ im\ gleichen\ Verhältnis\ angepasst,\ wie\ Bedarf\ / Verbrauch\ im\ Bestand$

textliche Zusammenfassung

Beschreibung:

Die Turnhalle der Vitusschule wurde etwa im Jahr 1960 errichtet. Sie besteht aus einer Kleinsporthalle mit Abstellraum und Sanitärräumen. Die Sporthalle hat ein Satteldach, während die Nebenräume in zwei niedrigeren Anbauten mit Flachdächern untergebracht sind. Die Dächer sind wahrscheinlich mit bauzeitlich typischen Platten von max. 5cm Dicke gedämmt. Die WC's und Duschen wurden vor kurzem erneuert, es dauert jedoch sehr lang, bis die Duschen warm werden, obwohl die Warmwasserbereitung mit einem Durchlauferhitzers durchgeführt wird. Die Außenwände bestehen aus ca. 30 cm dickem ungedämmtem Mauerwerk. Große Teile der Fassade sind mit alten Holzfenstern ohne Sonnenschutz versehen, weshalb es im Sommer in der Halle sehr heiß wird. Zusätzlich werden die Nutzer durch die nach Süden liegende Fensterfront geblendet. Ein Durchlüften gestaltet sich schwierig, da keine Lüftungsanlage vorhanden ist und nur einzelne Fenster gekippt werden können. Die Nutzer klagen außerdem darüber, dass die Türen undicht sind und es im Winter zieht. Die Beleuchtung ist in der Halle auf einem guten Standard, da sie vor ca. 8 Jahren durch Leuchtstoffröhren mit Reflektoren erneuert wurde. Das Gebäude wird durch einen Gas-Brennwertkessel aus dem Jahr 2007 mit hohem Wirkungsgrad beheizt. Das Trinkwasser wird durch einen Gas-Durchlauferhitzer mit 8,6 bis 28 kW erwärmt, der ebenfalls aus dem Jahr 2007 stammt. Der Geräteraum ist unbeheizt und wird aufgrund der nicht vorhandenen Dämmung im Winter äußerst kalt und feucht.

Verbrauchsanalyse:

Aufgrund der der freien Lage und des großen Fensteranteils ist der Wärmeverbrauch der Turnhalle sehr hoch. Aus im Prinzip denselben Gründen (hoher Tageslichtanteil) sowie recht neuer Beleuchtung ist der Stromverbrauch in der Halle deutlich unter dem Vergleichswert der EnEV.

Maßnahmen:

Aufgrund des schlechten energetischen Standards empfielt es sich, die gesamte Hülle der Turnhalle energetisch zu verbessern, d.h. Dämmung der Außenwände und des Dachs sowie Ersetzen der bestehenden Fenster durch 3-fach verglaste Fenster bzw. nanogel-gefüllte Fenster. Durch die große Fensterflächen nach Norden und Süden gibt es sowohl Probleme mit der sommerlichen Überhitzung und der Blendung an sonnigen Tagen als auch große Energieverluste in der Heizperiode. Durch Verringern der Fensterfläche könnten neben der Verbesserung dieser Probleme auch die Sanierungskosten verringert werden. Neben der Hüllfläche sollte auch die Technik erneuert werden, zur Reduzierung der Lüftungswärmeverluste und zur Beheizung ist der Einbau einer Lüftungsanlage mit WRG und großem Umluftanteil sinnvoll, vor allem da der Einbau aufgrund der einfachen Struktur der Turnhalle recht einfach erscheint. (Empfohlene U-Werte: s. Seite 2 Tabelle)

Zusammenfassung:

Die Sanierung der Turnhalle der Vitusschule ist ein recht überschaubares Projekt. Zwar ist absolute CO2und Energieeinsparung aufgrund der geringen Größe nicht sehr hoch, dafür sind allerdings auch die Sanierungskosten für die energetischen Maßnahmen sehr gering. Aufgrund der oben genannten schlechten Nutzungsbedingungen sollte die Sanierung der Turnhalle spätestens in den nächsten 5 bis 10 Jahren durchgeführt werden.

Foto 1: Westfassade

Foto 3: Südfassade

Foto 5: Eingangstür

Foto 2: Dächer der Turnhalle

Foto 4: Südfassade Abstellraum

Foto 6: Dachüberstand

Foto 7: Sporthalle

Foto 9: Umluft-Heizgerät

Foto 11: Fenster im Sanitärbereich

Foto 8: Beleuchtung Sporthalle

Foto 10: Heizkörper im Sanitärbereich

Foto 12: gedämmt Leitungen im Technikraum

