# ACTIVITE EXPERIMENTALE ENERGIE D'UNE BALLE LORS D'UNE CHUTE

Nous allons exploiter l'enregistrement du mouvement d'une balle chutant verticalement, afin de calculer les deux formes d'énergies du système.

## I) Objectifs

- Etudier expérimentalement l'évolution des différentes formes d'énergie d'un système au cours d'un mouvement.
  - Utilisation de l'outil informatique et du logiciel GENERIS 5+.

# II) Matériel

Bille ou balle, repère de distance, caméra numérique, ordinateur avec GENERIS 5+, imprimante réseau.

# III) Etude d'une balle en chute libre sans vitesse initiale

1) Dispositif expérimental, étude informatique, créations des grandeurs

**Principe :** on étudie, image par image, la chute d'une balle de tennis à l'aide du logiciel GENERIS 5+. Chaque image est séparée d'un intervalle de temps  $\Delta t = 0,040\,$  s (l'enregistrement vidéo s'est fait à 25 images/seconde).

#### **Manipulation:**

#### a) Démarrage et initialisation du logiciel

- Allumez l'ordinateur. Double cliquez sur l'icône « Généris 5+ » du bureau.
- Cliquez sur « affichage » puis sur « <u>3</u> Vidéo » ou cliquez sur l'icône . Un espace de travail apparaît sur la gauche de l'écran, cliquez sur l'onglet vertical « traitement manuel ».
- Cliquez ensuite sur l'icône dossier et aller chercher le fichier vidéo « CHUTE VERTICALE TENNIS » à traiter dans le dossier proposé par votre professeur. La vidéo apparaît à l'écran. Elle comporte 17 images (durée 640 ms).
- Le film a déjà été retravaillé de telle façon que l'image 0 corresponde au lâcher de la bille. Vous pouvez jeter un coup d'œil en faisant défiler l'enregistrement jusqu'à la fin à l'aide du bouton « avance d'une image ». Revenez au tout début, déplacez le pointeur et fixez l'origine au milieu de la balle à l'image 0. Si vous avez besoin, cliquez sur la « loupe » accessible aussi par le bouton droit de la souris.
- Allez en suite sur le haut de l'axe vertical de 1,85 m, cliquez gauche (sans relâcher). Vous disposez d'un pointeur qui permet d'étirer une flèche sur la règle. Etirez celle-ci verticalement **vers le bas** sur 1,85 m à l'aide de la règle filmée. Ensuite, entrez la valeur (en m) pour cette flèche. Décochez « Repère orthonormé ».



#### b) <u>Traitement</u>

- Cliquez sur le «drapeau» qui permet de démarrer le traitement
- Chaque «clic» sur le milieu de la bille permet de pointer la position de la bille image par image. L'avance est automatique. Repasser en zoom 1 quand c'est nécessaire.
  - Stoppez le traitement à la dernière image .



#### c) Mise en place de l'étude avec la création des variables d'études

- Sélectionnez l'onglet «Tableau» sous la vidéo. Vous y trouverez 2 colonnes t et Y. Renommez la colonne Y en **h (hauteur de chute)** en m.
  - Vérifiez que l'enregistrement commence à t = 0 ms (image 0).
- On veut maintenant obtenir une **altitude Z** dont l'origine se trouve sur le dernier «clic» fait sur la dernière image. Relever votre valeur maximale en h. Cliquez 2 fois sur la colonne C, créer la variable Z (en m). Dans la cellule C1, entrez la formule «= votre hmax B1». Validez par enter, puis « étirez » sur l'ensemble de la colonne.
- On veut maintenant créer la variable **vitesse V**. Cliquez 2 fois sur la colonne D, créer la variable V (en m/s). Dans la cellule **D2**, entrez la formule «= (C1-C3)/0.08». Validez par enter, puis « étirez » sur l'ensemble de la colonne (jusqu'en D16 et pas en D17). Vous mettrez 0 dans la cellule D1 (vitesse initiale nulle).
- On veut maintenant créer la variable **vitesse au carré V<sup>2</sup>**. Cliquez 2 fois sur la colonne E, créer la variable V2 (en m<sup>2</sup>/s<sup>2</sup>). Dans la cellule E1, entrez la formule «= D1^2». Validez par entrée, puis « étirez » sur l'ensemble de la colonne jusqu'en 16.
- On veut maintenant créer la variable **énergie cinétique Ec**. Cliquez 2 fois sur la colonne G, créer la variable Ec (en J). Dans la cellule G1, entrez la formule  $\ll 1/2*0.056*E1*$  où 0,056 correspond à la masse de la balle en kg (56 g = 0,056 kg). Validez par enter, puis  $\ll$  étirez  $\gg$  sur l'ensemble de la colonne jusqu'en 16.
- Création de la variable **énergie potentielle Ep**. Cliquez 2 fois sur la colonne H, créer la variable Ep (en J). Dans la cellule H1, entrez la formule «= 0,056\*9,81\*C1» où 0,056 est la masse de la bille en kg et 9,81 l'intensité de la pesanteur en N/kg. Validez par entrée, puis « étirez » sur l'ensemble de la colonne jusqu'en 16.
- Création de la variable **énergie mécanique Em** = Ec + Ep. Cliquez 2 fois sur la colonne I, créer la variable Em (en J). Dans la cellule I1, entrez la formule «= H1+G1». Validez par entrée, puis « étirez » sur l'ensemble de la colonne jusqu'en 16.

# d) Etude de la variation des énergies au cours du temps

• Sélectionnez l'onglet «Graphique» sous la vidéo. Cette fois, choisir la variable **t** pour l'abscisse et les variables **Em**, **Ep**, **Ec** en ordonnées. Modéliser celle qui semble horizontale (type droite). Afficher l'équation sur le graphique et imprimer.

### 2) Exploitation des résultats : questions

| 1. Si on néglige toute rotation en considérant le solide en simple translation dans l<br>référentiel terrestre, que peut-on dire de la vitesse en tous les points de la balle ? Quell<br>est la nature du mouvement ? |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Décrire l'allure de chaque courbe d'énergie et indiquer si les valeurs de Ec, Epp et Er sont constantes ou non au cours de la chute.                                                                               |
|                                                                                                                                                                                                                       |
| 3. Indiquer ce que devient l'énergie potentielle Epp de la balle. Interpréter.                                                                                                                                        |
|                                                                                                                                                                                                                       |