

Allogreffe de Cellules Souches Hématopoïétiques du Sang Placentaire Marseille, 30 septembre - 1 octobre Association des Internes et Jeunes Hématologues

V Rocha MD, PhD Unité de Greffe de Moelle Osseuse Hôpital Saint Louis, France

First cord blood transplant

Past and Present of Cord Blood Transplants

- 1989 First Cord blood transplant
- 1989-92 Clinical observation that GVHD was reduced in HLA incompatible CBT
- 1992-93 Establishment of Cord blood banks (NY, Paris, Milan and Dusseldorf)
- 1993-95 Feasibility of HLA incompatible unrelated cord blood transplants
- 1995 Establishment of Eurocord group
- 1997 Nucleated cell dose more important factor for engraftment and survival, influence of HLA on engraftment
- 1998 Large series of UCBT = confirmation of cell dose and HLA
- >2000 Retrospective comparisons between UBMT and UCBT
- 2002 Use of cord blood cells in adults with promising results
- 2003 Criteria of cord blood choice and indications
- 2003-04 Use of double cord and RIC regimen in adults
- 2004 Isolation of USSC from umbilical cord blood

2004-05 — Comparable results between unrelated CBT and UBMT in adults

NETCORD-EUROCORD INTERACTIONS

CORD BLOOD BANKS

BMDW MUD Registries TRANSPLANT CENTERS (EBMT and non EBMT)

EUROCORD Registry

2842 cord blood transplantation performed from 1988 to Sep 2006 in 39 countries and 318 transplant centers: - 138 EBMT → 1700 cases

- 180 Non-EBMT \rightarrow 742 cases

> Single CB transplant n=2680 Related n= 267 Unrelated n = 2313

- > Expanded Unit n= 52
- > Unit for multi cord n= 150
- > UCB + BM (haplo) n= 14
- > CB + BM (genoidentical) n= 18
- > Autologous or gene therapy n=4

CLINICAL RESULTS

Related Cord Blood Transplantation

Related Cord Blood Transplantation (n=231)

5 years EFS according to diagnosis

Related cord blood transplantation for maligancies (n=109) Survival according to status of the disease at CBT

COMPARISON OF GVHD AFTER HLA-IDENTICAL SIBLING CORD BLOOD vs BONE MARROW TRANSPLANTS IN CHILDREN

MULTIVARIATE ANALYSIS - GVHD -

MULTIVARIATE ANALYSIS - Hematopoietic Recovery & Survival -

Survie Globale après greffes HLA identiques de SCO comparées aux greffes de MO chez les enfants selon les diagnostiques

V Rocha, J Wagner, K Sobosinski et al, NEJM 342: 1846-1854, 2000

Indications of cord blood banking for family use

- Sibling with a disease which can be cured by hematopoietic stem cell transplantation: Poor risk leukemia, aplastic anemia, hereditary disorders.
- HLA mismatched transplants with 1, 2 or full haplotype (?)
- Familial predisposition to malignancies
- Genetic disease (autologous use for gene therapy)

Unrelated Cord Blood Transplantation

Estimate number of patients with an indication of an allogeneic hematopoietic stem cell transplants

HLA identical sibling donor
 Related 1 HLA incompatible
 Unrelated BM or PB donor (9 or 10 out of 10)
 no donor

Advantages and disadvantages

Searching and identifying an unrelated stem cell donor

BM	CB
16-56%	40-80%
3-6 mon	<1mon
30%	~1(?)%
2-10%	20%
HLA match	Cell Dose
Difficult	Easy
Yes	No
Yes	No
No	Yes
Yes	No
	BM 16-56% 3-6 mon 30% 2-10% HLA match Difficult Yes Yes No Yes

UNRELATED TRANSPLANTS BY RECIPIENT AGE

- Registered with CIBMTR, 1996 to 2003 -

Number of Unrelated CBT / year reported to Eurocord

Number of Unrelated Donor CBT according to the recipient age/year reported to Eurocord

UNRELATED CORD BLOOD TRANSPLANT

IN CHILDREN

UCBT in children with AML (n=154)

Outcome after Unrelated Umbilical Cord Blood Transplants for Children with Acute Lymphoblastic Leukemia

V Rocha, M Labopin, G Michel, N Kabbara, W Arcese, J Ortega, A P Iori, L Madero K-W Chan, F Locatelli, F Garnier, I Ionescu, P Wernet, E Gluckman

Eurocord and Acute Leukemia Working Party of EBMT

Hôpital Saint-Louis, Paris

Patient and disease characteristics (n=361)

	CR1	CR2	Advanced
N	87	152	122
Median age at UCBT	4.7 (0.4-16)	6.7 (0.7-16)	8.0 (0.5-16)
< 1 year	18%	<1%	<1%
+CMV Recipient	43%	44%	58%
Previous autograft	0	2%	10%
Duration of first CR	-	21 mo	23 mo

Disease Characteristics

	CR1 (n= 87)	CR2 (n=152)	Advanced (n=122)
Pre-B	47%	56%	66%
В	21%	19%	12%
Т	17%	16%	14%
Null	7%	3%	6%
Biphenotypic	8%	6%	2%
Poor risk Cytogenetics t (9;22), t (4;11)	89%	38%	39%

Outcomes after UCBT for children with ALL (n=361)

UCBT for Children with ALL

Cumulative incidence of neutrophil recovery according to number of cells infused $(10^7/kg)$ (per quartiles) (n=361)

UCBT for Children with ALL

Leukemia Free Survival according to disease status (n=361)

Risk factors of outcomes after UCBT for children with ALL in 2^{nd} CR (n=152)

Results of multivariate analysis in CR2 patients

	p value	RR	95%CI
Acute GVHD (II-IV)			
Use of Serotherapy	0,03	0,42	0.19-0.93
TRM	no factor		
Relapse			
Off therapy	0,03	0,33	0.12-0.92
LFS			
Off therapy	0,02	0,57	0.36-0.92

UCBT for Children with ALL in CR2 (n=152)

Causes of death (n=86)

Comparative studies between UCBT and UBMT in children

(V Rocha Blood 2001, J Barker Blood 2001, H Dalle BMT 2004, Jacobson BMT 2004, P Rubinstein ASH 2005)

Cord blood vs Bone Marrow

ENGRAFTMENT **ACUTE GVHD CHRONIC GVHD** EARLY TRM RELAPSE SURVIVAL

Non malignant diseases in children

Overall survival after UCBT in patients with bone marrow failure syndromes

Overall survival of children with Primary Immunodeficiencies according to Number of HLA differences (n=93)

UNRELATED CORD BLOOD TRANSPLANT

IN ADULTS

Results

Eurocord Registry

Overall Survival after UCBT for adults with hematologic malignancies n = 457

Outcomes of Unrelated Cord Blood Transplants compared to Unrelated Bone Marrow Transplants in Adults with Acute Leukemia

A retrospective based registry study

V Rocha on behalf of Eurocord and Acute Leukemia Working Party-EBMT New England Journal of Medecine , Nov 2004

MULTIVARIATE ANALYSIS - Hematopoietic Recovery & GVHD -

MULTIVARIATE ANALYSIS - TRM , RELAPSE AND LFS -

1.2 P=0.29 P=0.46 * 0.70 * * 1.0 RELATIVE RISK 0.8 0.6 0.4 0.2 0.0 Relapse Leukemia Free Survival TRM

* Reference Group

UBMT

UCBT

Indication for allogeneic HSCT

NO HLA identical sibling

NO HLA matched unrelated donor

Unrelated Cord Blood

Haplo Identical T-cell depleted PBSC

NETCOR

Comparison of outcomes after

Unrelated Cord Blood or

Haploidentical T-cell depleted Peripheral Blood

Stem Cells in Adults with High Risk Acute

Leukemia

V Rocha, F Aversa, M Labopin, G Sanz, F Ciceri, W Arcese, D Bunjes, J Rowe, P Di Bartolomeo, F Frassoni, M Martelli and E Gluckman on behalf of the Eurocord-Netcord and Acute Leukemia Working Party EBMT

Patients

From 1998-2002

229 haplo and 139 UCBT were performed for adults with high risk acute leukemia (AML and ALL)

Two different analysis were performed AML patients Haplo = 154 UCBT = 66 ALL patients Haplo = 75 UCBT = 73

AML Patients and Disease characteristics

	Haplo	UCBT	P
N Status at transplant	154	66	0.9
CR1 CR2 More advanced	33 (21%) 32 (21%) 89 (58%)	15 (23%) 12 (18%) 39 (59%)	
Previous autologous transplant	21%	25%	0.61
Interval from diag-transplant	333 d	384 d	0.16
Median year of transplantation	2000	2000	0.21

Haplo versus UCBT for adult patients with AML			
2 year-LFS according to status of the disease			
	Haplo	UCBT	Ρ
CR1	48±9%	48±14%	0.94
CR2	42±10%	44±16%	0.70
Advanced	8±3%	20±6%	0.29

ALL Patients and Disease characteristics

() , ∠ ∠)

	Haplo	UCBT	Ρ
Ν	75	73	
Age (y) Median	27	20	0.007
Range	15-56	15-55	
CMV+	65%	62%	0.76
Cytogenetics abnorm	ality		
+ (0.22)	1104	310/	0.57

ALL Patients and Disease characteristics

	Haplo	UCBT	P
N Status at transplant	75	73	0 79
CR1 CR2	23 (31%) 18 (24%)	15 (29%) 12 (20%)	0.77
More advanced	34 (45%)	39 (51%)	
Previous autologous transplant	13%	14%	0.90
Interval from diag-transplant	419 d	415 d	0.10
Median year of transplantation	2000	2000	0.23

Haplo versus UCBT for adult patients with ALL

Unadjusted 2 year-LFS according to status of the disease

	Haplo	UCBT	Ρ
CR1	32±10%	38±11%	0.92
CR2	15±9%	40±13%	0.16
Advanced	0%	33±8%	0.0004

Haplo versus UCBT for adult patients with ALL

Multivariate analysis –TRM, Relapse and LFS

Conclusions

• In this retrospective registry-based analysis in adults patients with high risk acute leukemia, outcomes of HLA mismatched UCBT compared to Tcell depleted Haploidentical PBSC have shown

- •Delayed neutrophil recovery
- Increased incidence of acute GVHD
- •Same incidence of chronic GVHD in ALL and increased incidence in AML

•In patients with AML, TRM, relapse rate and LFS were similar between UCBT and Haplo transplants.

•In patients with ALL, LFS is increased in UCBT recipients compared to Haplo transplants

How to improve engraftment?

Donor choice

How to choose the best unit?

Strategies of Cord Blood Banks

Collection of units containing high number of cells

Under investigation

Use of hematopoietic growth factors at day 0 Ex vivo expansion of cord blood cells Intrabone injection of cord blood cells Co-infusion of mesenchymal cells Reduced intensity conditioning regimen using cord blood cells Use of double transplants

How to improve engraftment?

Donor choice

How to choose the best unit?

Strategies of Cord Blood Banks

Collection of units containing high number of cells

Under investigation

Use of hematopoietic growth factors at day 0 Ex vivo expansion of cord blood cells Intrabone injection of cord blood cells Co-infusion of mesenchymal cells educed intensity conditioning regimen using cord blood cells Use of double transplants Impact of number and type of HLA incompatibilities and cell dose on outcomes of unrelated cord blood transplants for patients with malignant and non-malignant disorders

An Eurocord registry analysis

UCBT malignant disorders (n=929) Overall survival according to number of HLA and cell dose

Interaction between HLA mismatches, number of cells and outcomes after unrelated CBT for malignant diseases

	Number of HLA MM 0-1 vs 2 vs 3-4	Type of HLA MM Class I vs class II	Interaction with number of cells
PMN engraftment	Less	Same	Worse 3-4 MM and <3x10 ⁷ NC/kg
Platelet engraftment	Less	Same	Worse 3-4 MM and <3x10 ⁷ NC/kg
TRM	More	More 2 DR MM	Worse 3-4 MM and <3x10 ⁷ NC/kg
AGVH	More	More 2 DR MM	Same
CGVH	More	Same	Decreased < MM and > cells
Relapse	Less	Less 2 DR MM	Increased < MM and > cells
OS , EFS	Same	Same	Decreased >MM and <cells< td=""></cells<>

Interaction between HLA mismatches, number of cells and outcomes after unrelated CBT for non malignant diseases

	Number of HLA MM 0-1 vs 2 vs 3-4	Type of HLA MM Class I vs class II	Interaction with number of cells
PMN engraftment	Less	More 1 HLA-B # Less 2 DRB1=	Less <cells and="" more<br="">MM</cells>
Platelet engraftment	Less	More 1 HLA-B # Less 2 DRB1=	Less <cells and="" more<br="">MM</cells>
TRM	More	More 2 DRB1=	Less <cells and="" more<br="">MM</cells>
AGVH	More	Same	More >cells and>MM
CGVH	More	Same	More >cells and>MM
OS, EFS	Less	Less with DRB1	Worse if HLA MM <u>></u> 2 and NC <u><</u> 3.5NC/kg

How to improve engraftment?

Donor choice

How to choose the best unit?

Strategies of Cord Blood Banks

Collection of units containing high number of cells

Under investigation

Use of hematopoietic growth factors at day 0 Ex vivo expansion of cord blood cells Intrabone injection of cord blood cells Co-infusion of mesenchymal cells Use of double transplants educed intensity conditioning regimen using cord blood ce

NETCORD/FACT Standards

NETCORD/FACT standards developed in consensus by representatives of NETCORD and FACT

Accreditation

(FACT = Foundation for the Accreditation of Cellular Therapy)
% of French CB units accoring to the number of NC/Kg

How to improve engraftment?

Donor choice

How to choose the best unit?

Strategies of Cord Blood Banks

Collection of units containing high number of cells

Under investigation

Use of hematopoietic growth factors at day 0 Ex vivo expansion of cord blood cells Intrabone injection of cord blood cells Co-infusion of mesenchymal cells Use of double transplants

Reduced intensity conditioning regimen using cord blood cells

New Approaches to Adult UCBT

Problem: Low Cell Dose

Solution: Use 2

Double Unit UCBT: Hypothesis

Increased graft cell dose will improve engraftment & survival

(Each unit will not reject the other)

Eligibility:

- High-risk hematologic malignancy
- No single 4-6/6 UCB
 2.5 x 10⁷ NC/kg
 (later increased to 3.5)

Goal : maximize graft cell dose 1º Endpoint: Donor Engraftment

Patient Characteristics

Total N	23
Tx date	2000-2003
Age	24 yrs (13-53)
Wt	73 kg (48-120)
Diagnosis	
AML	13 (56%)
CML	2 (9%)
ALL	8 (35%)
Conditioning	
Cy120/ TBI 1320/ ATG	2 (9%)
Cy120/ TBI 1320/ Flu75	21 (91%)
Median Follow-Up	10 months
	(4 - 30)

Cell Doses using Double UCB Tx

Infused TNC Larger Unit Smaller Unit

Infused CD34+ Larger Unit Smaller Unit 3.5 x 10⁷/kg (1.1-6.3) 1.9 (0.6-3.6) 1.5 (0.5-2.7)

4.3 x 10⁵/kg (0.9-14.3) 2.7 (0.5-10.4) 1.2 (0.4-4.7)

HLA match in Double UCB Tx

Best Match to Recipient	N = 23
6/6	2 (9%) one 6/6 unit (2nd unit: 6/6 n = 1, 5/6 n = 1)
5/6	11 (48%) one 5/6 unit (2nd unit: 5/6 n = 4, 4/6 n = 7)
4/6	10 (43%) both units 4/6

Match to	
Each Other	N = 23
6/6	2
5/6	5
4/6	16

Neutrophil Engraftment (n = 21)

Do Both Units Contribute to Hematopoiesis?

Do Both Units Contribute to Hematopoiesis?

NO

Only 1 unit is sustained

Chimerism

Double (n = 23)				
Day +21	91% (64-100)	24%: 2 units present 74% (42-85) vs. 20% (15-40)		
		76%: 1 unit		
+100	100%			

Complete donor chimerism was rapid and sustained. Sustained hematopoiesis accounted for by only 1 unit.

Cell Doses using Double UCB Tx

Infused TNC Larger Unit Smaller Unit

Infused CD34+ Larger Unit Smaller Unit

Infused CD3+ Larger Unit Smaller Unit 3.5 x 10⁷/kg (1.1-6.3) 1.9 (0.6-3.6) 1.5 (0.5-2.7)

4.3 x 10⁵/kg (0.9-14.3) 2.7 (0.5-10.4) 1.2 (0.4-4.7)

1.0 x 10⁷/kg (0.5-2.2) 0.6 (0.3-1.3) 0.4 (0.1-0.9)

Transplant Related Mortality

Disease-Free Survival

How to improve engraftment?

Donor choice

How to choose the best unit?

Strategies of Cord Blood Banks

Collection of units containing high number of cells

Under investigation

Use of hematopoietic growth factors at day 0 Ex vivo expansion of cord blood cells Intrabone injection of cord blood cells Co-infusion of mesenchymal cells Use of double transplants

Reduced intensity conditioning regimen using cord blood cells

 \geq 2.5 x 10⁷ NC/kg (at collection)

(J Barker and J Wagner)

Reduced Intensity conditioning regimen in Unrelated cord blood transplants for patients with hematological malignancies (n=65)

Patients and disease characteristics

Transplants performed from 1999-2005 (75% in the last 3 years)with single unitsFollow-up:8 months (3-26)Median age:47 years (16-76)Median weight:60 kg (40-110kg)CMV+:63%

Chr L Lymph Myeloma ALL 6% MDS 6% 6% AML 57%

Diagnosis

Previous autologous transplant: 39% (n=26)

Reduced Intensity conditioning regimen in Unrelated cord blood transplants for patients with hematological malignancies (n=65)

Conditioning

Fludarabine+TBI (2Gy)	3
Fludarabine+Endoxan (or mephalan)	11
Fludarabine+Endoxan+TBI (2y)	33
Fludarabine+Bussulfan(<8mg/kg)± other	9
Fludarabine+Bussulfan(<8mg/kg)+TBI (<5y)	4
Other	5
Anti T antibodies (ATG/ALG or MonoAb)	26%
Hematopoietic growth factors (<day 8)<="" td=""><td>87%</td></day>	87%

RESULTS

Neutrophils recovery Median days: 20 days (0-56)

Chimerism at 3 months (available in 71% of the patients)Full donor67%Mixte chimerism9%Autologous reconstitution24%1º8!

Platelets recovery 35 days (9-63)

DFS after RIC UCBT according to number of HLA disparities

DFS after RIC UCBT according to conditioning

DFS after RIC UCBT according to number of cells infused

DFS after RIC UCBT according to status of disease

HOW TO CHOOSE AN ALTERNATIVE STEM CELL TRANSPLANT DONOR ??

Conclusions

•Cord Blood is an established source of hematopoietic stem cell for allogeneic transplantation in children and adults with malignant and non malignant disorders

•Nowadays, an alternative HSC donor can be found for almost all patients

•The indication of using UCB cells will depend on the urgency of transplantion, number of cells in a unit and number of HLA disparities

•Main questions to be answered :

the immune reconstitution (mainly for adults) and long term follow up

•New technologies using cord blood cells such as RIC and double transplants are still in an investigational phase

EUROCORD CENTERS

ABECASIS M **ABELLA E ADKINS D AMADORI S ARCESE W BADELL SERRA I** BAKER D **BEGUIN Y** BEKASSY A **BEKSAC M BENGT S BENOIT Y BERNAUDIN F BERTRAND Y BLAISE D BLAYLOCK J BOGDANIC V BORDIGONI P BOSI** A **BRICHARD B** CAHN JY CAIRO M CHAMPAGNE M CHAN KW **CHAPUIS B**

CHI KONG LI COWAN M DALLORSO S DEMEOO F DELLIERS LG **DI BARTOLOMEO P DICKINSON A** DIEZ B DINI G DOKAL I EAMES G EBELL W **FAGIOLI F** FAVRE C FERNANDEZ MN FERREIRA E FIBBEN W **FILIPOVICHA FISCHER A** FISCHER S **GIBSON B GOLDBERG S GRAFAKOS S**

GRAHAM M GRANENA A GRATECOS N HARHALAKIS N JACOBS H **JACOBSEN N** JEDRZEJCZACK W JOUET JP KATO S **KAWANO Y KEESLER C KINOSHITA A KOBYLKA P KOZINER B KREMENS B** KUSMINSKY G LAMBERTENGHI G LAPORTE JP LEUNG L LIX LIMA M and GIRALT S LOCATELLI F LOCATELLI F LUTZ P MADERO LM

MARTINEZ-RUBIO A MASSZI T MESSINA C MICHEL G MILLER J MILONE J MILOVIC V MILPIED N MOORE T MUÑOZ VILLA A NAGLER A NIGEL P NURNBERGER W O'MARCAIGH A **ORTEGA J** PASQUINI R PEREZ-OYTEZA J **PESSION A** PETERS C PETRYGA D PIHKALA U PIMENTEL P PLOUVIER E PRITCHARD D

QUINONES R RABUSIN M RAJA T **REIFFERS J RIO B** ROBERTS I ROITTMAN S **ROSSBACH F ROSSBACH T** ROWE J **RUBIN A** SANZ G SADOUN A SASLAVSKY J SCHULTZ A SCIME R SHAW P SHPALL EJ SIEVERS E SMITH F SOCIE G SPRUCE W STARY J STIFF P **TAKAHASHI T**

TIEDEMANN K **TOREN A** UDERZO C URBAN C VERDEGUER A VERDONCK L VEYS P VILMER E VORA A **VOWELS M** WALL D WAWER A WILL A WOOD J YANIV I YEAGER A ZANDER A ZANESCO L ZINTL F

