

Rôle de la réanimation dans la prise en charge des urgences hématologiques

Frédéric Pène

Réanimation Médicale, Hôpital Cochin, AP-HP Université Paris Descartes, Sorbonne Paris Cité Institut Cochin, Inserm U1016, CNRS UMR-8104

Causes for ICU admission in cancer patients

- Acute respiratory failure
- Severe sepsis and septic shock

Bleeding

Metabolic complications

- Tumor lysis syndrome
- Malignant hypercalcemia
- □ Acute renal failure

Coma

Monitoring of high-risk procedures

O Annals of Intensive Care 2011

a SpringerOpen Journal

Intensive care of the cancer patient: recent achievements and remaining challenges

Elie Azoulay^{1,2*}, Marcio Soares^{3,4}, Michael Darmon⁵, Dominique Benoit⁶, Stephen Pastores⁷ and Bekele Afessa⁸

Annals of Intensive Care 2011 a SpringerOpen Journal

Intensive care of the cancer patient: recent achievements and remaining challenges

Elie Azoulay^{1,2*}, Marcio Soares^{3,4}, Michael Darmon⁵, Dominique Benoit⁶, Stephen Pastores⁷ and Bekele Afessa⁸

Figure 1 Trends of mortality in critically ill cancer patients during the past two decades. Unadjusted hospital mortality rates in critically ill cancer patients by year of study publication (clear gray). Unadjusted ICU mortality rates in bone marrow transplant recipients by year of study publication (dark gray).

Why did the outcome of critically ill cancer patients improve over time?

Advances in cancer treatments

- □ Therapeutic intensification (high-dose chemotherapy and HSCT)
- □ Specific targeted treatments
- Monitoring of residual disease in asymptomatic patients (molecular fusion transcripts)
- Surgical advances

Continuous improvement of hematological patients in the ICU: the example of multiple myeloma

Peigne, Intensive Care Med 2009

Why did the outcome of critically ill cancer patients improve over time?

Advances in cancer treatments

- Therapeutic intensification (high-dose chemotherapy and HSCT)
- Specific targeted treatments
- □ Monitoring of residual disease in asymptomatic patients (molecular fusion transcripts)
- Surgical advances

Supportive care

- **Fast metabolic control of hyperuricaemia (rasburicase)**
- □ Preventive or pre-emptive treatment of infections
 - Hematopoietic growth factors
 - Early detection of microbial patterns (ELISA, PCR)
 - New antimicrobial treatments (antifungal drugs)

Indications and management of intensive care

- **Close collaborations between ICU physicians and hemato-oncologists**
- □ Early admission policy
- □ Improvements in management of organ failures

Prognostic factors of critically ill cancer patients

- Age
- Performance status
- Malignancy stage

Prognosis of hematologic malignancies does not predict intensive care unit mortality

Paul B. Massion, MD; Alain M. Dive, MD, PhD; Chantal Doyen, MD; Pierre Bulpa, MD; Jacques Jamart, MD; André Bosly, MD, PhD; Etienne Installé, MD

Crit Care Med, 2002

Prognostic factors of critically ill cancer patients

- Age
- Performance status
- Malignancy stage
- Allogeneic hematopoietic stem cell transplantation
- Neutropenia
- Bacterial complication
- Organ failures
- Volumes of admissions
- Delayed ICU admission

Intensive Care Med DOI 10.1007/s00134-012-2594-0

Jae-Uk Song Gee Young Suh Hye Yun Park So Yeon Lim Seo Goo Han Yeh Rim Kang O Jung Kwon Sookyoung Woo Kyeongman Jeon

ORIGINAL

Early intervention on the outcomes in critically ill cancer patients admitted to intensive care units

MET criteria ^a	Number of patients (%)
Airway and breathing	
Acute respiratory distress: respiratory rate ≤ 8 or ≥ 30 breaths/min	86 (43)
Acute hypoxia: oxygen saturation derived from pulse oximetry <90 % for 5 min, despite previous oxygen administration	106 (53)
Acute hypercapnia and acute acidosis: arterial carbon dioxide pressure >50 mm Hg and pH <7.3	38 (19)
Upper airway obstruction: stridor or use of respiratory accessory muscle	40 (20)
Circulation	
Unexplained hypotension: systolic blood pressure <90 mmHg	91 (46)
Acute chest pain	4 (2)
Bradycardia or tachycardia: heart rate <50 or >130 beats/min	97 (49)
Arrhythmia with symptom	21 (11)
Neurology	
Sudden mental change or unexplained agitation	46 (23)
Seizure	9 (5)

in-hospital mortality OR per hour to intervention 1.4 [1.2-1.7], p<0.001

Malignancy-related organ failures: benefit of chemotherapy in the ICU

Cumulative survival

Darmon, Crit Care Med 2005

The ICU trial: the benefit of the doubt

Lecuyer, Crit Care Med 2007

Sauver : Limitation et Arrêt de soins

* Heure 01/07/2011

			17:05	
--	--	--	-------	--

Présents	
Diagnostic	
MCE	01/07 17:05
CEE.	01/07 17:05
Intuber ?	01/07 17:05
Extubation 1	01/07 17:05
VNI	01/07 17:05
EER	01/07 17:05
Actes chirur	01/07 17:05
Inotropes	01/07 17:05
Antibio	01/07 17:05
Transfusion	01/07 17:05
Sédation	01/07 17:05
Scopolamine.	01/07 17:05
Radiographie	01/07 17:05
Prél. sang.	01/07 17:05
Alarmes	01/07 17:05

		Monit E
		Monit P
Non	-	Monit S
Non	-	+ Limit
Non	-	Réadm
Non		
Non	-	Patient
Pas pour acidose	-	Contex
Pas en urgence	-	Direct.
Pas > dose max.	-	Proche
Pas de modification	-	Référe
Pas massive	-	
Si besoin	-	D. insta
Si besoln	-	Avis ag
Non	-	Famille
Non	-	Rp reli
Oul	•	

01/07 17:05
01/07 17:05
01/07 17:05
01/07 17:05
01/07 17:05

info	01/07 17:05
te	
anti	
s info	01/07 17:05
nt inf	01/07 17:05

), instants	
vis agg.	
amille près	01/07 17:05
p religieux	01/07 17:05

Oui	
Non	•
Non	•
Oui	
A réévaluer	-

Non	
Oul	•
Oul	•

Oul	-
oui	

-

Valider

Annuler

Alde...

Réanimation (2010) 19, 699-705

RECOMMANDATIONS

Aspects cliniques et éthiques du transfert en réanimation des patients porteurs d'hémopathies malignes

Clinical and ethical aspects of admission in intensive care unit of patients with malignant hemopathies

La commission d'éthique de la société française d'hématologie (SFH)¹, la société de réanimation en langue française (SRLF)¹, le groupe francophone de réanimation et urgences pédiatriques (GFRUP)¹

A 67 yo male patient

- Non-Hodgkin large B-cell lymphoma stage IV (bone marrow)
- Malnutrition with impaired functional status (PS 2)
- Good clinical response after 2 courses of chemo R-CHOP
- **Following the 3rd course of chemotherapy**
- Day 8: febrile neutropenia empirically treated with amoxicillinclavulanic acid + ciprofloxacin
- Day-15: acute respiratory failure (SpO₂ 93% with O₂ 6 L/min)
- Blood cell count: WBC 2100/mm³, Hb 8.6 g/dL, PLT 75000/mm³

Relevant questions

Should this patient be admitted to the ICU?

Ventilatory management?

Diagnostic procedures?

Survival trends of mechanically ventilated cancer patients

Non-invasive ventilation

NONINVASIVE VENTILATION IN IMMUNOSUPPRESSED PATIENTS WITH PULMONARY INFILTRATES, FEVER, AND ACUTE RESPIRATORY FAILURE

GILLES HILBERT, M.D., DIDIER GRUSON, M.D., FRÉDERIC VARGAS, M.D., RUDDY VALENTINO, M.D., GEORGES GBIKPI-BENISSAN, M.D., MICHEL DUPON, M.D., JOSY REIFFERS, M.D., AND JEAN P. CARDINAUD, M.D.

OUTCOME	NONINVASIVE- VENTILATION GROUP (N=26)	STANDARD- TREATMENT GROUP (N=26)	P Value
Intubation — no./total no. (%)	12/26 (46)	20/26 (77)	0.03
Immunosuppression from hematologic cancer and neutropenia	8/15 (53)	14/15 (93)	0.02
Drug-induced immunosuppression	3/9 (33)	5/9 (56)	0.32
Immunosuppression from the acquired immunodeficiency syndrome	1/2 (50)	1/2 (50)	0.83
Initial improvement in PaO ₂ :FiO ₂ — no. (%)	12 (46)	4 (15)	0.02
Sustained improvement in PaO2:FiO2 without intubation — no. (%)	13 (50)	5 (19)	0.02
Death in the ICU — no./total no. (%)†	10/26 (38)	18/26 (69)	0.03
Immunosuppression from hematologic cancer and neutropenia	7/15 (47)	13/15 (87)	0.02
Drug-induced immunosuppression	3/9 (33)	4/9 (44)	0.50
Immunosuppression from the acquired immunodeficiency syndrome	0/2	1/2 (50)	0.50
Total duration of any ventilatory assistance — days			
Among all patients	6±3	6±5	0.59
Among survivors	5 ± 2	3±5	0.12
Length of ICU stay — days			
Among all patients	7±3	9 ± 4	0.11
Among survivors	7±3	10 ± 4	0.06
Death in the hospital — no./total no. (%)	13/26 (50)	21/26 (81)	0.02
Immunosuppression from hematologic cancer and neutropenia	8/15 (53)	14/15 (93)	0.02
Drug-induced immunosuppression	4/9 (44)	6/9 (67)	0.32
Immunosuppression from the acquired immunodeficiency syndrome	1/2 (50)	1/2 (50)	0.83

Ventilatory support in critically ill hematology patients with respiratory failure

Rosario Molina¹, Teresa Bernal², Marcio Borges³, Rafael Zaragoza⁴, Juan Bonastre⁵, Rosa María Granada⁶, Juan Carlos Rodriguez-Borregán⁷, Karla Núñez⁸, Iratxe Seijas⁹, Ignacio Ayestaran¹⁰ and Guillermo M Albaiceta^{1,11,12*}, for the EMEHU study investigators¹³

	OR	95% confidence interval	Р
APACHE-II	1.06	1.02-1.10	0.002
Congestive heart failure on admission	0.26	0.08-0.85	0.026
Shock on admission	1.69	0.86-3.33	0.131
NIMV as first ventilatory approach	0.32	0.15-0.67	0.003
NIMV failure	5.74	2.40-13.73	<0.001
Allogeneic HSCT	6.78	1.78-25.85	0.005

Intensive Care Med (2004) 30:965–971 DOI 10.1007/s00134-004-2237-1	BRIEF REPORT	
Didier Gruson Frederic Vargas Gilles Hilbert Nam Bui Thierry Maillot Thierry Mayet	Predictive factors of intensive care unit admission in patients with haematological malignancies and pneumonia	

Parameters at the onset of the clinical evidence of pneumonia (in haematology ward)	Survivors (n=38)	Non-survivors (n=15)	P value
Age, years, mean±SD	50±13	48±16	0.75
Type of treatment			
Chemotherapy, n (%)	17 (45)	9 (60)	0.19
Transplantation	21 (55)	6 (40)	
Pathologic chest auscultation, n patients (%)	18 (47)	8 (53)	0.68
No. of involved quadrants on first chest X-ray	1.2 ± 0.8	2.4 ± 1.1	< 0.001
Initial PaO2 at the first blood gas analysis, mmHg	79±18	59±22	0.001
Initial level of nasal oxygen supplementation, l/min	1.3±1.7	3.9±2.4	< 0.001
Positive blood culture, n patients (%)	11 (29)	6 (40)	0.6
Gram-negative bacilli isolated in blood cultures	3 (8)	5 (33)	0.056
Presence of hepatic failure, n patients (%)	3 (7)	12 (80)	0.01

Odile Pillet Genevieve Chene

Georges Gbikpi-Benissan

If $O_2 > 3$ L/min

Diagnostic bronchoscopy in hematology and oncology patients with acute respiratory failure: Prospective multicenter data*

Elie Azoulay, MD, PhD; Djamel Mokart, MD; Antoine Rabbat, MD; Frédéric Pene, MD; Achille Kouatchet, MD; Fabrice Bruneel, MD; François Vincent, MD; Rebecca Hamidfar, MD; Delphine Moreau, MD; Ismaël Mohammedi, MD; Geraldine Epinette, MS; Gaëtan Beduneau, MD; Vincent Castelain, MD; Arnaud de Lassence, MD†; Didier Gruson, MD; Virginie Lemiale, MD; Benoît Renard, MD; Sylvie Chevret, MD, PhD; Benoît Schlemmer, MD

	95% Confidence		
	Odds-ratio	Interval	p Value
Related to the malignancy			
Remission of the malignancy	0.30	0.09-0.93	.03
Allogeneic bone marrow or stem cell	5.95	1.48-23.90	.01
transplantation			
Related to the cause of acute respiratory failure			
Admission during neutropenia recovery	0.13	0.03-0.57	.006
Undetermined diagnosis	8.65	1.39-53.56	.02
Related to the need for life-sustaining interventions			
Need for conventional mechanical ventilation	8.18	1.16-57.36	.03
Need for vasopressors	5.09	1.07 - 24.18	.04

The 4 steps of diagnosis

Appraisal of the clinical history

- Clinical picture
- Lung imaging
- Microbiological investigations

Acute respiratory failure in malignancies

Non-infectious complications (cardiogenic pulmonary edema, pulmonary embolism)

AU LIT

Acute monoblastic leukemia (AML5) 50 000 WBC/mm³, Hb 7.1 g/dL, PLT 15000/mm³

Specific disease-related pulmonary complications

- Lung infiltration
- Leukostasis
- Acute cell lysis pneumopathy
- Compression
- Hemoptysis
- Pleural effusion

Chemotherapy corticosteroids

Chemotherapy, endoluminal prothesis

Arterial embolisation

Pulmonary involvement in patients with malignancies

Infections

Bacterial infections Common pyogenic bacteria Streptococcus pneumoniae Staphylococcus aureus Haemophilus influenzae Pseudomonas aeruginosa and Enterobacteriaceae Intracellular bacteria Legionella pneumophilia Chlamydia and Mycoplasma pneumoniae Other bacteria Actinomyces israeli Nocardia spp. Pneumocystis jirovecii Invasive fungal Infections Molds Aspergillosis Emerging mycotic infections: trichosporosis, fusariosis, zygomycetes Yeasts Lung involvement during candidemia Endemic fungal infections Histoplasmosis, coccidioidomycosise, blastomycosis

Viral infections (primary infections or reactivations) Seasonal respiratory viruses Influenzae, parainfluenzae, rhinovirus Respiratory syncytial virus Herpes virus Cytomegalovirus, herpes virus, zoster virus and HHV6 Other viruses: adenovirus Mycobacterial infections Tuberculosis and atypical mycobacteria Noninfectious causes Cardiogenic pulmonary edema Capillary leak syndrome Lung infiltration Drug-induced toxicity Alveolar hemorrhage Transfusion-related acute lung injury Radiation-induced lung damage Alveolar proteinosis Diffuse alveolar damage **Bronchiolitis** Cryptogenic organized pneumonia Second malignancy

Élie Azoulay Benoît Schlemmer

Diagnostic strategy in cancer patients with acute respiratory failure

Diagnosis	Deficiencies	Main infections Bacteria	
Acute myeloid leukemia	Phagocytosis		
and a set of the second	Cell-mediated immunity	Yeasts	
Acute lymphocytic leukemia	Phagocytosis	Bacteria	
	Cell-mediated immunity	Yeasts, herpes viruses, P. jirovecii	
Lymphomas	Cell-mediated immunity	P. jirovecii, yeasts, bacteria, encapsulated bacteria	
Myelomas	Immunoglobulins	Encapsulated bacteria	
Chronic lymphocytic leukemia	Phagocytosis	Encapsulated bacteria	
	Cell-mediated immunity	Intracellular organisms	
Chronic myeloid leukemia	Phagocytosis	Bacteria	
Solid cancer	Compression, obstruction, ulceration	Bacteria	
Bone marrow transplantation	Phagocytosis	Bacteria	
	Cell-mediated immunity	Encapsulated bacteria	
	Immunoglobulins	Yeasts, P. jirovecii	
Associated condition	Asplenia in general associated with defect in immunoglobulins, altered phagocytosis and cell-mediated immunity	Encapsulated bacteria	

Halo sign

Air crescent

Ground-glass opacities

Reversed halo sign

Indications for fiberoptic bronchoscopy and broncho-alveolar lavage?

Élie Azoulay Benoît Schlemmer

Diagnostic strategy in cancer patients with acute respiratory failure

Reference	n	Diagnosis	Diagnostic impact	Therapeutic impact		
Stover et al. [96]	97	HM	66	-		
Martin et al. [142]	100	HM	30			
Xaubet et al. [143]	96	HM	49	31		
Campbell et al. [144]	22	HM	55	_		
Pisani et al. [145]	150	HM	39			
Maschmeyer et al. [146]	46	Neutropenia	30	_		
Cordonnier et al. [100]	56	Neutropenia	53	24		
Cazzadori et al. [147]	142	HM	36	_		
Von Eiff et al. [40]	90	HM	66	65		
White et al. [3]	68	HM	31	24		
Ewig et al. [28]	49	HM	31	16		
Gruson et al. [18]	41	Neutropenia	63	28		
Hilbert et al. [22]	24/46	HM	62	71		
Murray et al. [2]	27	HM	33	28		
Azoulay et al. [4]	203	HM	49.5	45.1		
Pagano et al. [148]	127	HM	53	14		
Jain et al. [82]	104	HM	56			
Hohenadel et al. [81]	95	HM	30	-		
Total	1537		46.2	34.6		

FOB + BAL

Diagnostic Strategy for Hematology and Oncology Patients with Acute Respiratory Failure

Randomized Controlled Trial

RECOGNISE • RESUSCITATE • REFER

Open Access

Research Hospitalized cancer patients with severe sepsis: analysis of incidence, mortality, and associated costs of care

Mark D Williams¹, Lee Ann Braun², Liesl M Cooper³, Joseph Johnston⁴, Richard V Weiss⁵, Rebecca L Qualy⁶ and Walter Linde-Zwirble⁷ Crit Care 2004

Open Access

Research Hospitalized cancer patients with severe sepsis: analysis of incidence, mortality, and associated costs of care

Mark D Williams¹, Lee Ann Braun², Liesl M Cooper³, Joseph Johnston⁴, Richard V Weiss⁵, Rebecca L Qualy⁶ and Walter Linde-Zwirble⁷

Crit Care 2004

Survival to septic shock in cancer patients: the CUB-Réa network (n=3437)

Zuber, Crit Care Med 2012

Intensive Care Med (2008) 34:17–60 DOI 10.1007/s00134-007-0934-2

SPECIAL ARTICLE

Special Article

Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

R. Phillip Dellinger, MD; Mitchell M. Levy, MD; Jean M. Carlet, MD; Julian Bion, MD; Margaret M. Parker, MD; Roman Jaeschke, MD; Konrad Reinhart, MD; Derek C. Angus, MD, MPH; Christian Brun-Buisson, MD; Richard Beale, MD; Thierry Calandra, MD, PhD; Jean-Francois Dhainaut, MD; Herwig Gerlach, MD; Maurene Harvey, RN; John J. Marini, MD; John Marshall, MD; Marco Ranieri, MD; Graham Ramsay, MD; Jonathan Sevransky, MD; B. Taylor Thompson, MD; Sean Townsend, MD; Jeffrey S. Vender, MD; Janice L. Zimmerman, MD; Jean-Louis Vincent, MD, PhD; for the International Surviving Sepsis Campaign Guidelines Committee

Crit Care Med 2008 Vol. 36, No. 1

Management of severe sepsis in the ICU: the cornerstones of the golden hours

- Collect blood cultures
- Early appropriate antibiotherapy
- Control of infection source
 - Removal of infected devices
 - Surgery

Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock*

Anand Kumar, MD; Daniel Roberts, MD; Kenneth E. Wood, DO; Bruce Light, MD; Joseph E. Parrillo, MD; Satendra Sharma, MD; Robert Suppes, BSc; Daniel Feinstein, MD; Sergio Zanotti, MD; Leo Taiberg, MD; David Gurka, MD; Aseem Kumar, PhD; Mary Cheang, MSc

Crit Care Med 2006

Sites of infections in neutropenic patients

Management of severe sepsis in the ICU: the cornerstones of the golden hours

- Collect blood cultures
- Early appropriate antibiotherapy
- Control of infection source
 - Removal of infected devices
 - Surgery
- Early volume resuscitation
 - $\Box \ge 20 \text{ mL/kg cristalloids}$
- Vasopressive support
 - Norepinephrine>epinephrine>dopamine
 - □ MAP > 65 mmHg

Management of severe sepsis in the ICU: doing less is better !!!

Resuscitation

- Cristalloids rather than colloids
- Restrictive fluid strategy
- Protective mechanical ventilation
 - \Box V_T 6 mL/kg better than 12 mL/kg
- Restrictive transfusion strategy
 - □ Hb 70-90 g/L rather than 100-120 g/L
- Daily sedatives interruption

Management of severe sepsis in the ICU: controversial issues

- Albumin resuscitation
- Intravenous immunoglobulin
- Glucose control and intensive insulin therapy
- Low-dose corticosteroids
- Type and timing of renal replacement therapy
- Anticoagulant treatment
- Platelet transfusion
- Pathophysiology-targeted treatments
- Immunity-enhancing treatments

Michael Darmon Elie Azoulay Corinne Alberti Fabienne Fieux Delphine Moreau Jean-Roger Le Gall Benoît Schlemmer

Impact of neutropenia duration on short-term mortality in neutropenic critically ill cancer patients

Fig. 1 Impact of G-CSF therapy on the likelihood of neutropenia recovery

Intensive Care Med 2002

Hematological patients in the ICU

- Significant advances over the last decade
- Large ICU admission policy for early and aggressive management of organ failures
- Close collaborations between intensive care physicians and hematologists are needed
- Frequent reappraisal of expected benefits of intensive care
- Relevant endpoints: assessment of post-ICU outcomes of cancer patients (quality of life, maintenance of anticancer treatments, long-term overall and disease-free survival)