Etude préclinique d’un nouveau médicament : lignées cellulaires, modèles animaux

Yves Collette

Cancer Research Center of Marseille (CRCM), Institut Paoli Calmettes
- « Laboratory of Integrative Structural & Chemical Biology (iSCB) »
- « TrGET, preclinical platform »
Drug discovery is an inherently inefficient process, particularly in oncology.

- >800 M€
- 1 out of 50

* Source: Hutchinson & Kirk, NRCO 2011
The drug development pipeline
The drug discovery workflow

Target selection
- Studies of Disease Mechanisms
 - Molecular Studies
- Animal Studies
 - relevant species
 - transgenic KO mice
 - conditional KOs
 - agonists/antagonists
 - antibodies
 - antisense
 - RNAi

Discovery
- Target
 - receptor
 - ion channel
 - transporter
 - enzyme
 - signalling molecule
- Lead Search
 - Develop assays (use of automation)
 - Chemical diversity
 - Highly iterative process
- Lead optimization
 - selectivity
 - efficacy in animal models
 - tolerability: AEs mechanism-based or structure-based?
 - pharmacokinetics
 - Highly iterative process

Development
- Drug Candidate safety testing
- Human Studies
 - Phases I, II, III
- Drug Approval and Registration

CRCM
Centre de Recherche en Cancérologie de Marseille
What are Pharmacology Studies for Anti-Cancer Biologics?

- Evaluation of ability of a new agent to induce the desired therapeutic effect
 - *in vitro* studies of product binding, tumor cell killing, and other effects
 - *in vivo* studies of anti-tumor activity
 e.g., human tumor xenograft models

- Demonstration of pharmacologic and/or biologic activity is the first step in the development of ANY new drug or biologic
Goals of Non-Clinical Testing of Small Molecule Drugs and Biologicals

- To characterize potential adverse drug effects
 - Define end organ toxicities
 - Define reversibility of toxicity

- To characterize pharmacokinetic profile

- To characterize beneficial pharmacodynamic effects
 - Proof of principle

- To guide safe use in human clinical studies
 - To determine a safe & reasonable starting dose
 - Provide monitoring guidelines for the clinical study

- Provide sufficient data to conclude that patients are not exposed to unreasonable risks
 - Potential for benefit must also exist
What Are These Small Molecules we Test?

Practical Definition:

- An **organic molecule** of less than 1000 Daltons
 Typically in the range of 300-700 Daltons

- Small organic molecules made by living organisms
 (e.g., natural products)

- Small organic molecules made by chemists
 (e.g., organic compounds, RNAi)

- In all cases one is looking for a small ‘drug-like’ organic molecule that displays a biological activity
 (e.g., agonist, antagonist) with the target of interest.

- **Protein** (recombinant, Ab)
How Does One Select a Library to screen?

- **Random Selection**
 Random high throughput screening
 Little is known about the target
 Few or no active compounds as guides

- **Computational Chemistry/Virtual Screening**
 Creation of ‘Focused Libraries’
 Requires prior knowledge about target
 Active compounds, 3D-Structure
 Sequence homology

- **Prior Experience**
 Library successfully used for similar
 or related targets
High Throughput Screening (HTS)

- HTS enables the testing of large numbers of chemical substances for activity in diverse areas of biology in a relatively short time.

- The entire chemical space of small organic molecules is estimated to be $> 10^{60}$. Of those, $\sim 2.7 \times 10^7$ compounds have been registered and made. (Nature Insight, 2004)

- Responses studied can range from biochemical systems of purified proteins or enzymes to signal transduction pathways to complex cellular networks (Systems Biology).
History of cancer chemotherapy

Figure 1. Key advances in the history of cancer chemotherapy

- Advances in drug screening
- Events with national impact
- Advances in cancer therapeutics

- Arsenicals (1, 2)
 - Animal models (1–4)
 - 1900

- Transplantable tumors (5–11)
 - 1912

- Nitrogen mustard in lymphomas (15–18)
 - 1943

- Model development (7)
 - 1935

- Thiopurines (24, 25)
 - 1949

- Antifolates (22)
 - 1948

- 5-Fluorouracil (26)
 - 1951

- Antitumor antibiotics (23)
 - 1959

- Methotrexate in choriocarcinoma
 - 1955

- Cancer Chemotherapy National Service Center
 - L1210 as primary screen (27–30)

- Concept of cure
 - 1960s

AACR Centennial Series
In vitro Drug testing: The NCI60 experience
In vitro Drug testing: The NCI60 experience

Wainberg
The TrGET preclinical platform

ETOH

Physicians
- Access to innovative compounds
- Preclinical validation

Searchers
- Research tools
- Valorisation

Drug company
- Partnership
- Biological valorisation of Clinical trials
The TrGET initiative

A screening strategy to search for in vivo efficient (subtype-specific?) anti-AML drug combinations

1. Drug set design:
 - Diverse set
 - Specific set (Kl, epidrugs,...)

2. Target cell design:
 - Diverse cell lines
 - Primary AML

3. Cell test design:
 - Cytotoxicity
 - Caspase
 - ...

Drugs

Drug A

Drugs

21 different drug compounds + X

Diverse
Kinase inhibitors
Epidrugs

+ Cells

AML cell lines
Primary AMLs

24-120h

Cell test

Dr Vey & Prébet
Hematology Dpt
IPC

TrGET
The TrGET initiative

4. Identification of AML subtype(s) with specific sensitivity towards drug subset(s):
- Clinical-biology
- Cytogenetics
- Transcriptome
- Methylome
- Mutations
- ...
Expanding on the NCI60 experience

> 500 cell lines!

McDermott et al PNAS 2007

AZ628 selective
Sorafenib poor selectivity / BRAF

1/3 V600E are insensitive!
Breaking resistance?

Chou & Talalay: \[CI = \frac{(D_1)}{(D_x)_1} + \frac{(D_2)}{(D_x)_2} \]

\((D_1)\) et \((D_2)\) : doses de la drogue 1 et de la drogue 2 en combinaison

\((D_x)_1\) et \((D_x)_2\) : doses de la drogue 1 et de la drogue 2 utilisées seules inhibant x% de la viabilité.
Breaking resistance?

Challenges for application to clinical trial

- Link of observed synergism with underlying biochemical/physiological mechanism difficult to discover
- In vitro drug ratio vs in vivo/MTD
- As compared to standard treatment
- Impact on tumour heterogeneity not assessed in vitro
- Lack of correlation between in vitro cytotoxicity and patient benefit
Established cell lines

- Difficulties to outgrow many cancer cells
 in vitro
- Nbr models < cancer subtypes
- In vitro adaptation
- Insufficient molecular characterization
- Tumour initiating cells
- Lack of key features (ex: stromal-tumour interactions)

Primary cell cultures...

Drug testing

48h
The TrGET initiative

- Expansion
- CGH array
- Mutational status
- Transcriptomic profile

Death ↔ Cytotoxicity (EC50 value) ↔ Viability
Seulement 5% des molécules passent le stade de la recherche et seules 2% passent les essais précliniques. Parmi celles-ci 20% passent avec succès les essais cliniques et parviennent sur le marché. On voit que l’expérimentation animale joue le rôle d’un filtre très efficace à la fois en recherche et en toxicologie.

Figure 2 | Preclinical models to evaluate anticancer drugs. Selected steps in anticancer drug validation. Each step adds specific information that will be used in the drug validation process before beginning a clinical trial.

In vivo drug testing, validation
Animal Models in Cancer

- Spontaneous tumors
 - Idiopathic
 - Carcinogen-induced
 - Transgenic/gene knockout animals: p53, RB, etc

- Transplanted tumors
 - Animal tumors: Lewis lung, S180 sarcoma, etc
 - Human tumor xenografts: human tumor lines implanted in immunodeficient mice (current NCI standard in vivo efficacy testing system)
 - Human tumors growing in vivo in implantable hollow fibers
Immunocompromized mice

- Athymic “nude” mice developed in 1960’s
- Mutation in nu gene on chromosome 11
- Phenotype: retarded growth, low fertility, no fur, immunocompromised, Lack thymus gland, T-cell immunity
- First human tumor xenograft of colon adenocarcinoma by Rygaard & Poulson, 1969

- irradiation
- low relevance to evaluate host (immune system)/ tumor interactions
Some of the tumor cell lines already xenografted at the TrGET plateform.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Organ</th>
<th>Disease</th>
<th>Reporter subtype</th>
<th>Xenograft study end points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrCa-MZ01</td>
<td>Breast</td>
<td>Carcinoma</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SKBR7</td>
<td>Breast</td>
<td>Carcinoma</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SUM149</td>
<td>Breast</td>
<td>Invasive ductal carcinoma</td>
<td>GFP/luc or luc</td>
<td></td>
</tr>
<tr>
<td>BT74</td>
<td>Breast</td>
<td>Invasive ductal carcinoma</td>
<td>luc</td>
<td></td>
</tr>
<tr>
<td>MCF7</td>
<td>Breast</td>
<td>Adenocarcinoma</td>
<td>GFP/luc or luc</td>
<td></td>
</tr>
<tr>
<td>T47D</td>
<td>Breast</td>
<td>Carcinoma</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MDA-MB-231</td>
<td>Breast</td>
<td>Adenocarcinoma</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MDA-MB-453</td>
<td>Breast</td>
<td>Adenocarcinoma</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H2O2R</td>
<td>Adrenal gland</td>
<td>Carcinoma</td>
<td>Color of deciduals</td>
<td></td>
</tr>
<tr>
<td>PO3</td>
<td>Possible</td>
<td>Adenocarcinoma</td>
<td>GFP/luc</td>
<td></td>
</tr>
<tr>
<td>LN229</td>
<td>Possible</td>
<td>Adenocarcinoma</td>
<td>GFP/luc</td>
<td></td>
</tr>
<tr>
<td>PC3</td>
<td>Possible</td>
<td>Carcinoma</td>
<td>GFP/luc</td>
<td></td>
</tr>
<tr>
<td>HCT116</td>
<td>Colon</td>
<td>Colorectal Adenocarcinoma</td>
<td>GFP/luc</td>
<td></td>
</tr>
<tr>
<td>HCT15</td>
<td>Colon</td>
<td>Colon Adenocarcinoma</td>
<td>GFP/luc</td>
<td></td>
</tr>
<tr>
<td>H229</td>
<td>Colon</td>
<td>Colorectal Adenocarcinoma</td>
<td>GFP/luc</td>
<td></td>
</tr>
<tr>
<td>U87</td>
<td>Blood</td>
<td>Acute Prolymphocytic Leukemia</td>
<td>GFP/luc</td>
<td></td>
</tr>
<tr>
<td>NB4</td>
<td>Blood</td>
<td>Acute Prolymphocytic Leukemia</td>
<td>GFP/luc</td>
<td></td>
</tr>
<tr>
<td>K562</td>
<td>Blood</td>
<td>Acute Prolymphocytic Leukemia</td>
<td>GFP/luc</td>
<td></td>
</tr>
<tr>
<td>HU60</td>
<td>Blood</td>
<td>Acute Prolymphocytic Leukemia</td>
<td>GFP/luc</td>
<td></td>
</tr>
<tr>
<td>RMA</td>
<td>Blood</td>
<td>Lymphoma cell line</td>
<td>luc</td>
<td></td>
</tr>
<tr>
<td>PK15</td>
<td>Blood</td>
<td>mastocytosis</td>
<td>Luc</td>
<td></td>
</tr>
<tr>
<td>IGROV1</td>
<td>Ovary</td>
<td>Colorectal Carcinoma</td>
<td>GFP/luc</td>
<td></td>
</tr>
<tr>
<td>SKOV2</td>
<td>Ovary</td>
<td>Colorectal Carcinoma</td>
<td>GFP/luc</td>
<td></td>
</tr>
<tr>
<td>SMA-16</td>
<td>Gastric</td>
<td>Gastric Carcinoma</td>
<td>GFP/luc</td>
<td></td>
</tr>
<tr>
<td>BFS10</td>
<td>mammary</td>
<td>Carcinoma</td>
<td>GFP/luc</td>
<td></td>
</tr>
</tbody>
</table>

Xenograft study end points

- control n=7
- AraC 10mg/kg x 1x n=8
- AraC 10mg/kg x 10x n=8
- P<0.001
- MS=25
- MS=30,5
Xenograft Biomaging

Luciférase

Luciférase + Mg²⁺ + O₂ + ATP → Oxyluciférase + CO₂ + ADP

Monitoring

\[
\begin{array}{cc}
\text{Normalized Values} & 10,000,000% \\
1,000,000% & 100,000% \\
100,000% & 10,000% \\
10,000% & 100% \\
\end{array}
\]

Time (days after implantation)

\[R^2 = 0.96\]

\[R^2 = 0.98\]

Ilar J. et al; PMC 2009.

Sensitivity

Rabinovich B. et al, PNAS 2008

TryGET
Xenograft Biomaging
Xenograft Biomaging
Xenograft Biomaging

Primary AML

[Diagram showing fold changes over time for different groups labeled with dates and drug treatments.]

- DUC
- 2ry xenograft
- J70
- Fold
- 1G1 (+Arac)
- 2D1
- R1 (+Arac)
- 1D2
- 1G2 (+AraC)
- AraC

Dates:
- d25
- d54
- d67
Xenograft Biomaging

4 views

Non Inj Control

KG1 Lluc

MOLM14 Lluc

organs

Luminescent signal repartition among organs ("cells preferential locations")

% of total luminescent signal

prostate Liver kidneys heart spleen lungs femur

MOLM14 Lluc n=3 KG1 Lluc n=3
Xenograft Biomaging

Human Vγ9Vδ2 T Cells Specifically Recognize and Kill Acute Myeloid Leukemic Blasts

Julie Gertner-Dardenne, Remy Castellano, Emilie Mamessier, Slaveia Garbit, Eloïse Kochbati, Anne Etienne, Ande Charbonnier, Yves Collette, Norbert Vey, and Daniel Olive
Cancer Research Center of Marseille (CRCM), Institut Paoli Calmettes

- « Laboratory of Integrative Structural & Chemical Biology (iSCB) »
- « TrGET, preclinical platform »

yves.collette@inserm.fr