

STANDARDIZATION OF PURE VEGETABLE OIL (PVO) AS DIESEL FUEL

IFHVP - CEN - 2009/03/19

I.F.H.V.P.

Institut Français des Huiles Végétales Pures

Membre de

EUROPEAN PURE PLANT OIL ASSOCIATION

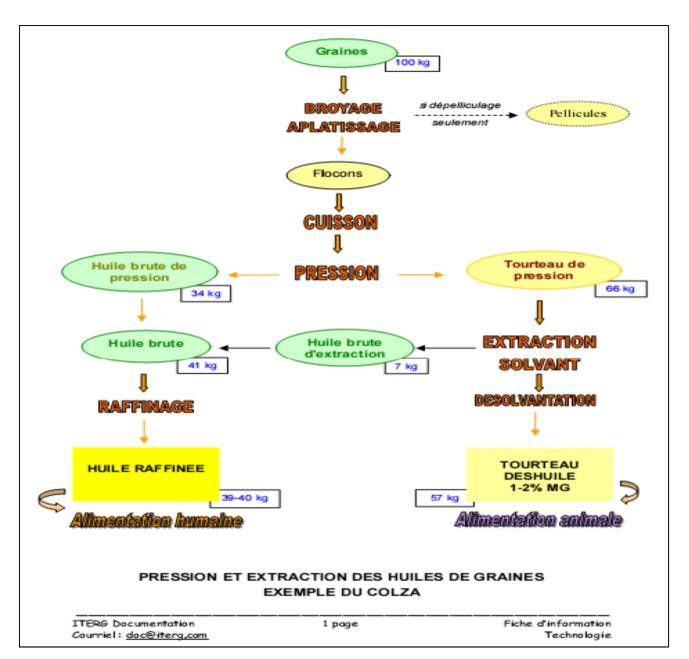
Maison départementale de l'Agriculture 271, rue de Péchabout - 47 000 AGEN

www.ifhvp.org

Norbert CASTAN Vice-Président iFHVP Président EPPOA European Pure Plant Oil Association

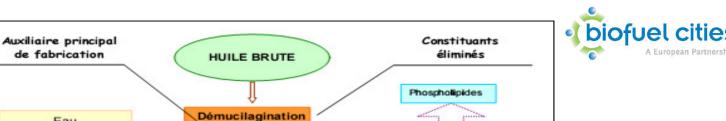
Aim of the workshop

- > To check for possibilities for standardization on a European level of pure oils
- > To debate about hurdles encountered, problems solved and standard-type of documents needed to promote the application of pure oil fuel

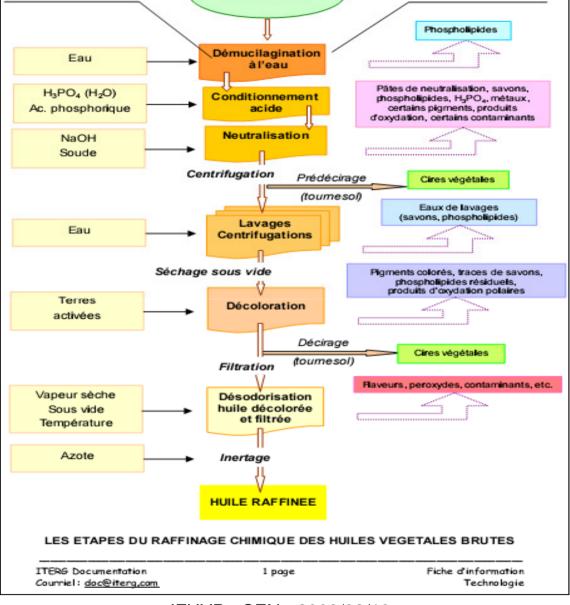


2 different ways to obtain Pure Vegetable Oils

1) oil extracted by industrial process



Very fast presentation



IFHVP - CEN - 2009/03/19

IFHVP - CEN - 2009/03/19

2 different ways to obtain Pure Vegetable Oils

2) Decentralized

hand-made cold-first-pressing

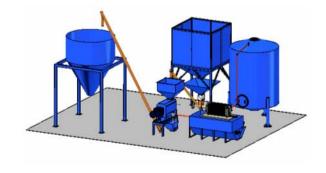
Way of production: local energetic synergy that's what IFHVP promotes

RAPSBIL.DK EPPOA.ORG

Simple process - PPO as by-product

Decentralized hand-made cold-firstpressed Pure Vegetable Oil characteristics

- Non-toxic: no risk of inhaling toxic or carcinogenic gases, no risk of water pollution, no risk on skin contact
- > Emissions = ideal of less pollution in converted vehicles
- > No sulphur emissions: no risk of acid rain, soot discharges considerably reduced
- > Biodegradable, non-flammable, no "vanishing into thin air"
- > Best energetic balance ratio PVO to diesel = 6:1 (ADEME 2002)
- > Best GHG balance ratio PVO to diesel = 1:7 (ADEME 2002)


In order to don't mistake different Pure Vegetable Oils,

- >IFHVP decided to call « **Veget-Ole** ® » the oil obtain by decentralized hand-made cold-first-pressing way of production.
- > So « Veget-Ole ® » is a substitute of « gazole » (french term of diesel fossil fuel).

IFHVP promotion for V*eget-Ole®* protocol

- > Nature friendly agriculture methods
- > Cold-first-pressing only with mechanical tools and without solvents
- > Careful filtration to obtain fuel quality
- > Use of oil fuel in converted vehicles

IFHVP - CEN - 2009/03/19

Advantages expected by implementing IFHVP *Veget-Ole®* protocol

- > Advantages for Environment and Nature (bees...)
- > A few hundred km of transport avoided
- > Oil locally suitable as fuel replacing fossil fuel
- Fat rich protein cake locally suitable for livestock feed replacing soybean cake
- Benefits for rural areas economy and social situation of farmers, country planning

Details STEP by STEP ...

Step	What IFHVP promotes	Why	Advantages	Drawbacks
soil preparation	no ploughing, low pressure inflated tyres	let do micro life of superficial soil, don't compact soil	soil better for growing, less fuel consumption, work and expense	
growing	no chemical products	avoid grass by mechanical tool, let do natural predators	avoid chemical products, less pollution and expense	
harvest	leave straw on soil	self-manure of soil	no chemical manure needed	
oilseeds storage	in farm	for local transformation	avoid transport, keep harvest ownership	need a warehouse
pressing	cold-first- pressing by only mechanical tools	preserve natural characteristics of 2 products	non-toxic, easy, cheap, less long molecular chain	need tools , guidance documents and councils

Step	What IFHVP promotes	Why Advantages		Drawbacks
oil using	replacing diesel fuel	no profit in France by replacing tractor- fuel	avoid transport, keep gains in rural areas, less fossil fuel imports	
cake using	replacing soybean cake	fat rich protein cake suitable for livestock feed (or natural manure)	traceability, keep gains in rural areas, less soybean cake imports	
oil storage and tank filling	dialysis and carefulness filtration	avoid molecular reformulation	oil suitable as fuel	
using oil as fuel	in converted vehicles	different of diesel : viscosity, flash point	best lubricant fuel, less pollutants, better couple and power, engine longevity	conversion legality and cost, engine warranty, oil supply

At European level, IFHVP propose to name oil obtained by decentralized hand-made cold-first-pressing as « VOLF » for Virgin Oil Liquid Fuel.

- Virgin = natural oil obtained only by mechanical coldfirst-pressing process (whitout chemical product in any stage of production)
- Liquid = always liquid even at cold temperatures (e.g. rapeseed and sunflower oil), by cold-first-pressing and adapted filtration
- Fuel = suitable as fuel (conformity to Weihenstephan pre-norm)

Technical innovations, relevance And results

Frederic PERRIN Engineer in Environment - Project Manager

IFHVP - CEN - 2009/03/19

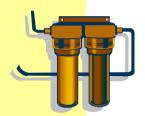
Innovation and relevance

- > German PVO norm DIN 51605 : limits of the analytical standards
 - Case of total contamination: EN 12662 (1998: Methods of test for petroleum and its products. Liquid petroleum products. Determination of contamination in middle distillates) better for vegetable oil than the ISO 663.

But: bad repetability, need to work on range of temperature and solvant quantity (viscosity)

Development of a special analytical standard for all type of VOLF (sunflower, Jatropha,...)

> Case of water content (Karl Fischer method): the content is so weak that the measure goes out of the device range



- > Consequences on process
 - ✓ conditions of sampling,
 - ✓ conditions of storage,
 - ✓ filtration efficiency: use of specific filtration medium

- ✓ Cut threshold
- ✓ <u>Determination of retention capacity</u>
- > 2 work tracks:
- Global comprehension of production process
- Research on specific material for techniques of separation

Veget-Ole® for VOLF

> Why?

To guarantee the tracking and the product quality, for the producer and for the user

- > How?
 - ✓ determination of critical points on process: cutting of the process by area
 - ✓ audit on site (questionnaire), in the presence of the producer
 - √ VOLF analyzes on 4 essential parameters (2 analyzes per year)
 - Water content,
 - Phosphorus content,
 - Acidity value (TAN)
 - Total contamination

reference to the DIN 51605

- > Enclosed space: not necessarily set up
- > techniques of separation and filtration quality

LTV-Work-Session on Decentral Vegetable Oil Production, Weihenstephan

Quality Standard for Rapeseed Oil as a Fuel (RK-Qualitätsstandard)

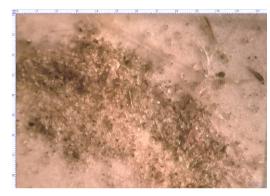
05/2000

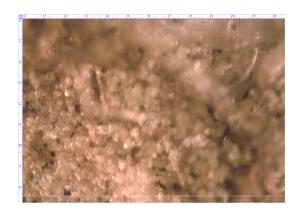
in Cooperation with:

	03/2000						
Properties / Contents	Unit	Unit Limiting Value		Testing Method			
		min.	max.				
charcteristic properties for Rapeseed Oil							
Density (15 °C)	kg/m³	900	930	DIN EN ISO 3675 DIN EN ISO 12185			
Flash Point by PM.	°C	220		DIN EN 22719			
Calorific Value	kJ/kg	35000		DIN 51900-3			
Kin ematic Viscosity (40 °C)	mm²/s		38	DIN EN ISO 3104			
Low Temperature Behaviour				Rotational Viscometer (testing conditions will be developed)			
Cetane Number				Testing method will be reviewed			
Carbon Residue	Mass-%		0.40	DIN EN ISO 10370			
lodine Number	g/100 g	100	120	DIN 53241-1			
Sulphur Content	mg/kg		20	ASTM D5453-93			
1	ariable propert	ies					
Contamination	mg/kg		25	DIN EN 12662			
Acid Value	mg KOH/g		2.0	DIN EN ISO 660			
Oxidation Stability (110 °C)	h	5.0		ISO 6886			
Phosphorus Content	mg/kg		15	ASTM D3231-99			
Ash Content	Mass-%		0.01	DIN EN ISO 6245			
Water Content	Mass-%		0.075	pr EN ISO 12937			

00 1ER 100e

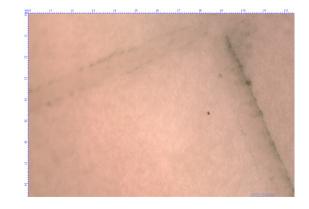
IFHVP - CEN - 2009/03/19





Filtration threshold: results on sunflower VOLF

Clarification 3 months - Barrel Press - sampling of 100 cm³



Hydraulique - Pneumatique

After filtration $2\mu m$ abs - retention capacity of 125 g - 1 pass

IFHVP - CEN - 2009/03/19

IFHVP Development in France with districts

Communauté de Communes du Villeneuvois (47):

- ✓ Running on VOLF (sunflower) since nov. 2005
- √ 10 refuse lorries (the worst conditions for engines!)
 - ✓ 4 on HP injection (DCI) running on 30% VOLF
 - ✓ 5 direct injection models converted (2-tank system) running on 100% VOLF
- > VOLF from Végétole® producers

Between november 2005 and november 2007, on 10 refuse lorries:

- 100 517 liters of consummate diesel fuel,
- 125 824 liters of consummate PVO,
- · 359 443 km covered

IFHVP Development in France

Communauté de Communes du Val de Garonne (47):

- > Running on VOLF (sunflower) since jan. 2008
- > 10 trucks with 30% VOLF: 6 lorries and 4 vans
- > VOLF from one Végétole® producer

EARL Gourgues

During 2008:

- 18 900 liters of consummate diesel fuel,
- 8 100 liters of consummate VOLF,
- 118 000 km covered

IFHVP - CEN - 2009/03/19

IFHVP Development in France

Communauté of Montauban Trois Rivières (82):

- > Running on VOLF (sunflower) since oct. 2008
- > 31 vehicles with 5, 15 or 30% VOLF (according to engine quarantees)
- > VOLF from one Végétole® producer

International IFHVP Development

> Madagascar

- > Study in 2007/2008
- project of usage of vegetable oil of Jatropha for the rail traction
- > Goal = local energetic diversification and social development alongside the rail

> Senegal

- local energetic diversification with VOLF from Jatropha and food farming
- Work on plastic recycling (HORTIS)
- Partnerships with the ISRA (Senegalese Institut for agricultural research) and a local association (DiaspoReva)
- Project envolved in the REVA program

IFHVP - CEN - 2009/03/19

Results of using VOLF

Végétole@results

IESPM		Total contamination (ppm)	Water content (ppm)	TAN (mg KOH/g)	Phosphorus (ppm)
D	IN 51605	24	750	2	12
CCV (47)	GAEC de Lustrac	13	464	1.04	9
	GAEC La Forêt	6	435	0.93	4
CCVG (47)	EARL Gourgues	20	655	0.36	0
Montauban (82)	Cuma Bioenergies 82	22.7	490	1.37	4

Even if some results are at the threshold of the DIN 51605, it must be considered that:

- -by knowing exactly the process line, suitable conditions and materials would be advocated (e.g. special filtration from 5 to 2 μ m abs),
- By knowing exactly the human parameter, some results as total contamination would be explained and not all product would be classified as "Not fuel Quality"

 IFHVP CEN 2009/03/19

- > Végétole@ tracks:
 - ✓ Sensitization of producers to quality factors
 - ✓ Use of specific filtration regarding :
 - ✓ Economic costs
 - ✓ capacity of treatment : volume treated per cartridge
 - ✓ threshold of residual contamination

According to the ACEA Worldwide Fuel Charter:

- >Contamination: 10 ppm (EN590: 24 ppm),
- \triangleright Particules counting: **ISO 4406** = **18/16/13** (none for EN590)

Test of filtration (1 pass on 2 μ m abs Hydac® - rapeseed oil - clarification 6 months): Particule counting: **ISO 4406** = 16/14/10

Technical results on vehicles

Case of CCV: expertise by CIRAD (10/17/2008)

- > Endoscopy of engines running on 30% and 100% VOLF,
- >Dismantling of one cylinder after 1000 hours working, 25 000 l VOLF consummate, since nov. 2005 :

No premature wear

"Some deposits are visible, in particular on the admission valve, in proportions not very important. One meets this deposit type in the motors to pure diesel fuel. Only shininess could indicate us a usage in PVO. A quotation motor would have given assuredly a close grade of 10/10."

IFHVP - CEN - 2009/03/19

Technical results on vehicles

In global (for all districts running on VOLF in France):

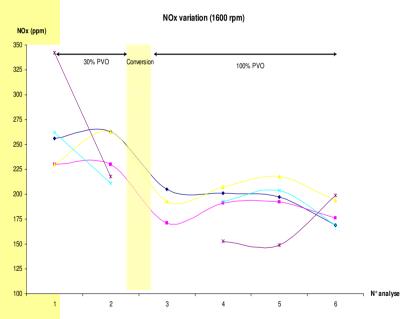
- √ No engine broken,
- √ No power loss,
- ✓ Less pollution,
- ✓ Good behaviour of vehicle

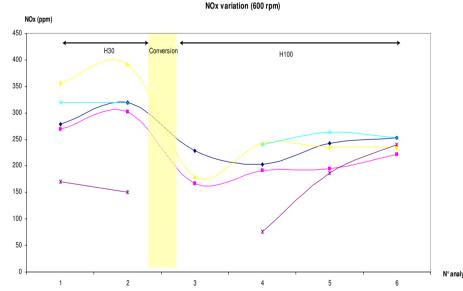
Pollution controls

- > Comparatives studies of the pollutant load between vehicles running on pure diesel fuel and vehicles running with VOLF (30% or 100%).
- > Special case of analyse: no engine load, 2 speeds.
- > Measure of quality load, not quantity of pollutants: do not compare with European emission standards

Average results :

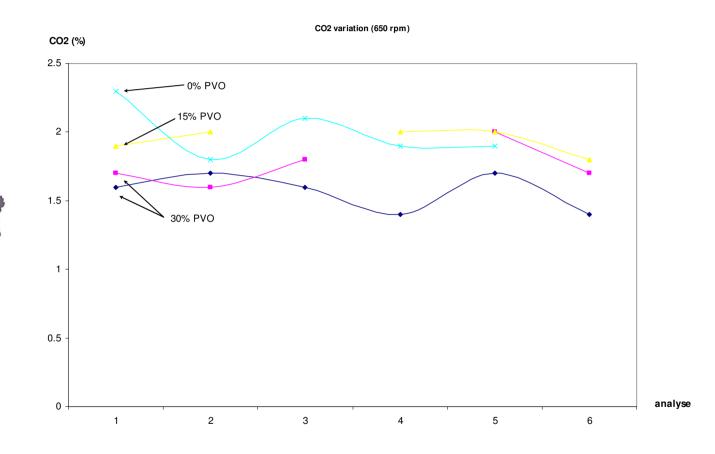
Averag	ge gap	СО	CO ₂	HC	NO _x	Opacity
100% PVO	Min	- 22%	-1.4%	+ 2.6%	- 3.5%	- 29 %
(CCV)	Max	- 25%	+ 3%	+ 9%	+ 1.5%	- 29 /0
30% PVO	Min	- 7%	0%	- 25%	- 56%	- 4.2%
(CCVG)	max	+ 33%	- 33%	+ 600%	+ 33%	- 71,4%





Pollution controls

Case of CCV: NO_x variation between 30% and 100% VOLF



CO₂ variation on HP injection

Engine models : Renault DCI 270

Energy and Carbon balances

	Fuel	Rapeseed Biodiesel	Sunflower biodiesel	Rapeseed oil	Sunflower oil
Returned energy / fossil energy mobilized	0,917	2,99	3,16	5,45	6,33
	Fuel	Rapeseed Biodiesel	Sunflower biodiesel	Rapeseed oil	Sunflower oil
GHG (g eq. CO ₂ /kg)	3394	888	745	660	498

From Ecobilan ADEME/DIREM/PHWC 2002

The district of Montauban has estimated that by using 30% of VOLF in 30 vehicles during 1 year, 150 tons of CO₂ would be saved.

\$calculating both balances regarding to:

Cultural routes - Short scale process lines - Direct use

Hurdles encountered and what IFHVP expected from European Commission in order to really uptake VOLF

Matter	It should be	Why	Advantages	Drawbacks
oil fuel standard	based on VOLF properties, don't try to get diesel characteristics	keep 100% natural product	promote VOLF in farm 100% natural production	NO MORE BARRIER FOR FARMER!
engine makers	"flex-fuel" diesel-VOLF	avoid oil supply difficulties, less conversion expense	less cost because of large scale production, engine warranty	R&D cost
legality	free to use VOLF in car, trucks, etc. all over EC	still forbidden in France (because of compatibility clause?)	End of discrimination in comparison with PVO in Germany and with Diester®	
taxation excise duty	VOLF free of excise duty all over EC	VOLF best biofuel	kill a real barrier to uptake, less aids to farmers required	

Matter	It should be	Why	Advantages	Drawbacks
taxation VAT	agricultural reduce rate	full VAT rate in France	avoid distortion all over EC	
R&D subsidiaries	subsidiaries harmonized between all biofuels	french excise duty covered special tax for IFP owner of Diester® patent	R&D (standardization, GHG reduce calculation) information and advices to farmers/users	
Councils to producers and users	European guidance documents and official VOLF advisors (EPPOA is a wealth of that kind!)	Difficult to get good an complete information needed Most of volunteers through Europe (not yet VOLF lobby!)	Insure oil quality for both farmers and users benefits	Budget for VOLF advisors expertise
VOLF uptake	implementation of legal and fiscal quoted measures	avoid discrimination and distortions, do promotion of VOLF	get a great and real progress in sustainable development all over EC	

To conclude : be pragmatic...

> An oil quality standard (Weihenstephan)

Base on VOLF characteristics,

> A specific VOLF pollutants standard

Lift some limits

- > New contamination measurement standard
- > Guidance documents

For farmers and users

- > Public founds for really involved advisors (*)
- (*) from non-profit organization which aims quote clearly VOLF

...and don't deceive farmers!

- Farmers: "a standardization, what's for?"
- IFHVP: "standardization is a step for VOLF promotion, and we will tell to European Commission that all other steps (engine aptitude, legality, taxation, R&D, guidance documents and putting in place advisors) should be started at the same time. "
- Farmers: "Otherwise it doesn't worth!"

Now farmers trust in our collective work to banish all hurdles we encounter today. Thank you to don't deceive them!

Institut Français des Huiles Végétales Pures

<u>« Fr</u>om Will to Well »

« De la Volonté au Bien »

Member of « European Pure Plant Oil Association »

RAPSBIL.DK EPPOA.ORG

IFHVP - CEN - 2009/03/19