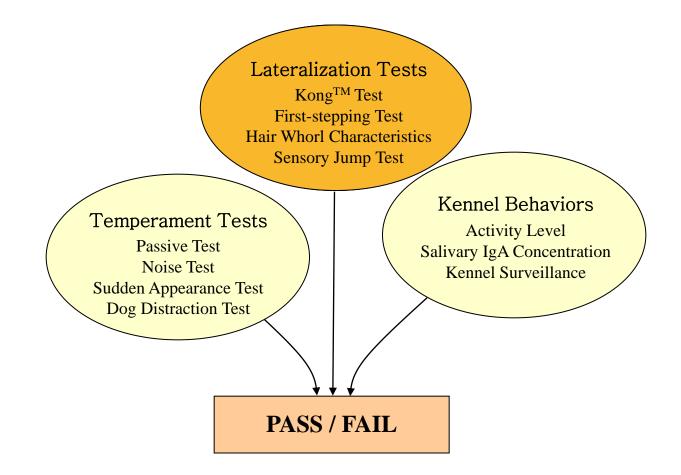
Association between Lateralization & Guide Dog Success

Lisa Tomkins B.Sc.Agr (Hons.I) PhD

Puppy Raising Officer

Guide Dogs


Training 1 Successful Guide Dog = AU\$30,000 ≈ US\$33,000 Success Rate for Dogs in Training ≈ 50%

Identifying Early Predictors

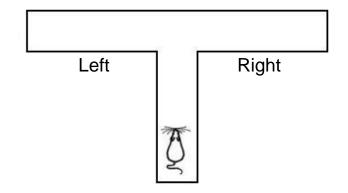
Tomkins, L.M., Thomson, P.C. and McGreevy, P.D. (2011) Behavioral and physiological predictors of guide dog success. *Journal of Veterinary Behavior: Clinical Applications and Research.* Volume 6, Issue 3, Pages 178-187.

Lateralization

Left Hemisphere Considered responses Focused attention Feeding & prey capture Categorizing stimuli Right Hemisphere Rapid responses Predator detection Analyzing spatial info Viewing novel stimuli

Left side of the body Rapid responses Aggressive responses Avoidance Right side of the body Prey detection & feeding Learned responses Approach

Motor Laterality

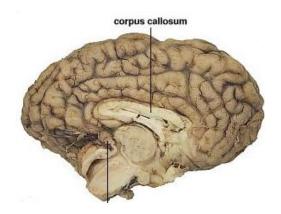

- Hand, paw, flipper preferences
- Coiling behaviors
- Turning bias

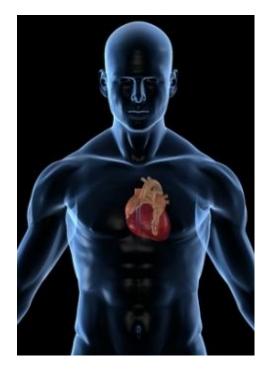
Clockwise

Counter-clockwise

Sensory Laterality

- Visual
- Auditory
- Tactile
- Olfactory





> Structural Laterality


- Hair whorl direction
- Position of heart in thorax
- Corpus callosum

Lateralization Studies

Motor Laterality in the Dog

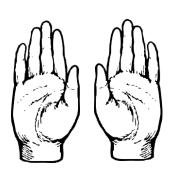
Task	Study	
Removal of tape from the eyes or nose	Tan, 1987; Tan and Caliskan, 1987; Quaranta et al., 2004; Poyser et al., 2006; Quaranta et al., 2006; Batt et al., 2008; Batt et al., 2009	
Removal of a blanket from the head	Wells, 2003	
Paw to shake hands	Wells, 2003	
Retrieval of food from a metal can or from a Kong™	Wells, 2003; Branson and Rogers, 2006; Batt et al., 2007; Batt et al., 2008; Siniscalchi et al., 2008; Batt et al., 2009; McGreevy et al., 2010; Tomkins et al., 2010	
Reaching for, or manipulation of, food	Aydinlioğlu et al., 2000; Aydinlioğlu et al., 2006; Branson and Rogers, 2006; Poyser et al., 2006	
Manipulation of a ball	Poyser et al., 2006	
Paw used to step-off from a sit or stand position	van Alphen et al., 2005; Tomkins et al., 2010	
Paw used preferentially during locomotion	Hackert et al., 2008	
Head turning bias	Siniscalchi et al., 2010	
Direction of tail wagging	Quaranta et al., 2007	

Motor Laterality in the Dog

Study	Sample size	Number of laterality scores recorded per dog	Ambilateral	Lateralized	Left	Right
Tan (1987) ^a	28	100	25%	75%	18%	57%
Tan and Caliskan (1987) ^a	24	100	NR	NR	NR	NR
Aydinlioğlu et al. (2000) ^b	21	NR	0%	100%	48%	52%
Wells (2003)						
Task 1 ^c	53	100	6%	94%	39%	55%
Task 2 ^d	53	100	15%	85%	34%	51%
Task 3 ^e	53	100	19%	81%	41%	40%
Quaranta et al. (2004) ^f	76	12-72	25%	75%	NR	NR
van Alphen et al. (2005) ⁹	36	3	NR	NR	NR	NR
Aydinlioğlu et al. (2006) ^b	20	NR	0%	100%	55%	45%
Branson and Rogers (2006) ^h	48	100	23%	77%	44%	33%
Poyser et al. (2006)						
Task 1 ⁱ	59	NR	NR	NR	NR	NR
Task 2 ^e	35	11-20	NR	NR	NR	NR
Task 3 ^j	55	30-120	NR	NR	NR	NR
Quaranta et al. (2006) ^e	36	NR	NR	NR	NR	NR
Quaranta et al. (2007) ^k	30	NR	NR	NR	NR	NR
Batt et al. (2008)						
Task 1 ^f	43	26	NR	NR	NR	NR
Task 2 ^h	43	100	NR	NR	NR	NR
Hackert et al. (2008) ^l	5	69-125	0%	100%	60%	40%
Siniscalchi et al. (2008) ^h	14	50	21%	79%	43%	36%
Batt et al. (2009)						
Task 1 ^f	43	26	NR	NR	NR	NR
Task 2 ^h	43	50	NR	NR	NR	NR
Siniscalchi et al. (2010) ^m	30	10	NR	NR	NR	NR
McGreevy et al. (2010) ^h	183	100	63%	37%	17%	20%
Tomkins et al. (2010a)						
Task 1 ^h	113	50	48%	52%	28%	24%
Task 2 ⁿ	113	50	24%	76%	30%	46%

Tomkins, L.M., McGreevy, P.D. and Branson, N.J. (2010) Lack of standardization in reporting motor laterality in the domestic dog (*Canis familiaris*). *Journal of Veterinary Behavior: Clinical Applications and Research*, Volume 5, Issue 5, Pages 235-239.

Right Preferent


Left Preferent

 Willing to approach novel objects & environments

 Cautious & fearful of approaching novel objects & environments

Ambidextrous (No Preference)

 Increased reactivity to loud noises; e.g. thunder, fireworks

Background - Sensory Laterality

 Convention dictates that the dog walks on the handler's left side

Background - Structural Laterality

Highly reactive Agitated

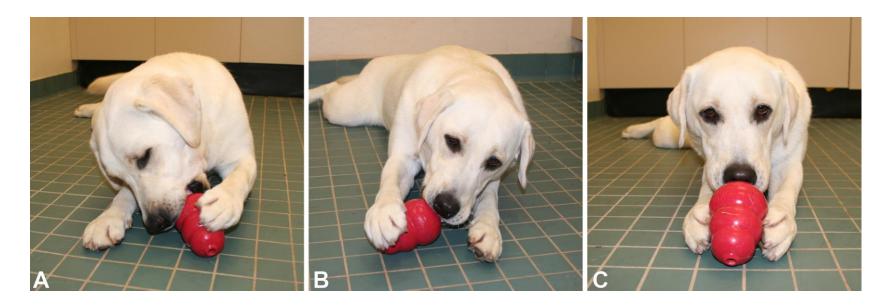
Lower reactivity Calmer, Docile

> Study Population

- 114 dogs
 - 61 Females
 - 53 Males

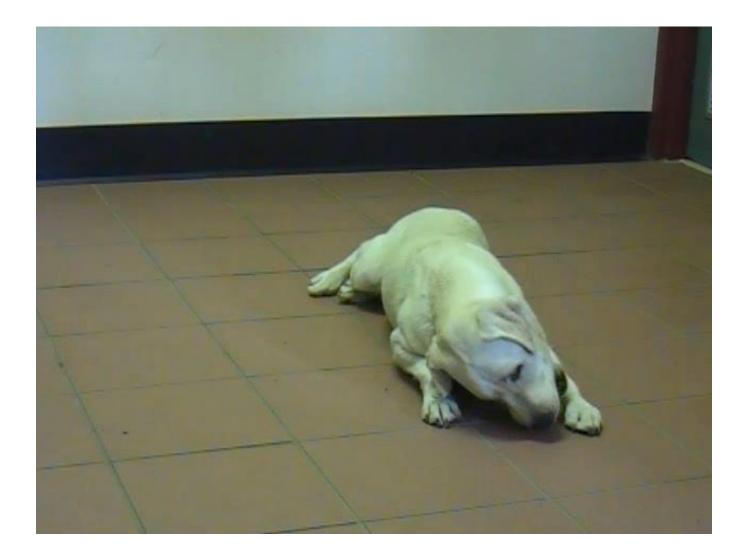
Motor Laterality

Sensory Laterality



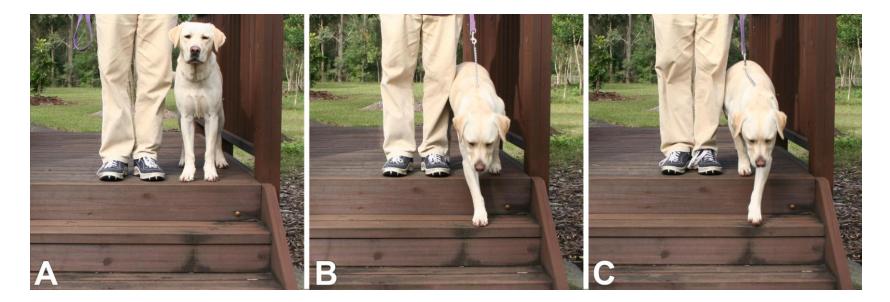
> Structural Laterality

The Kong[™] Test

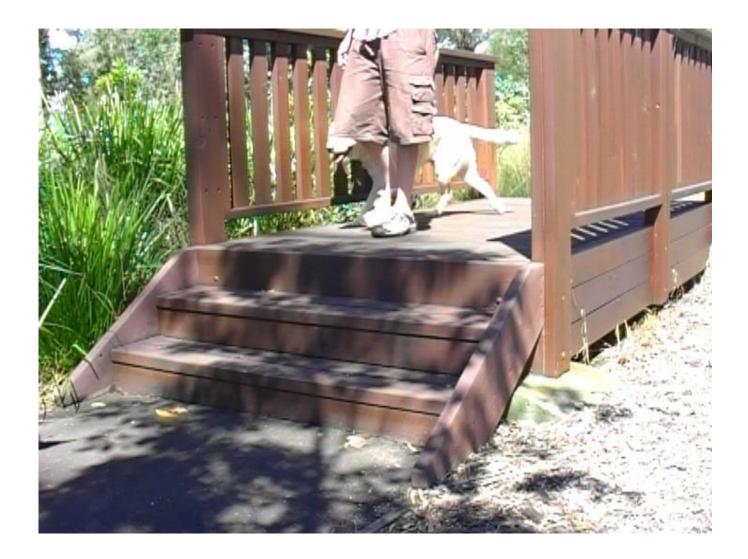


Left paw-use

Right paw-use


Both paws used

The First-stepping Test



Forelegs level prior to stepping-off

Right paw-use

Left paw-use

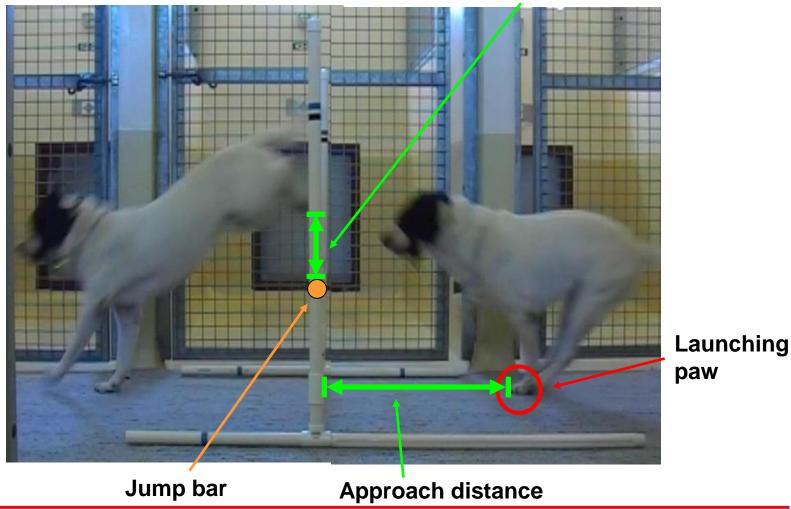
The First-stepping Test

Sensory Laterality – Visual Bias

Binocular vision (n=10 jumps) Right monocular vision

(n=10 jumps)

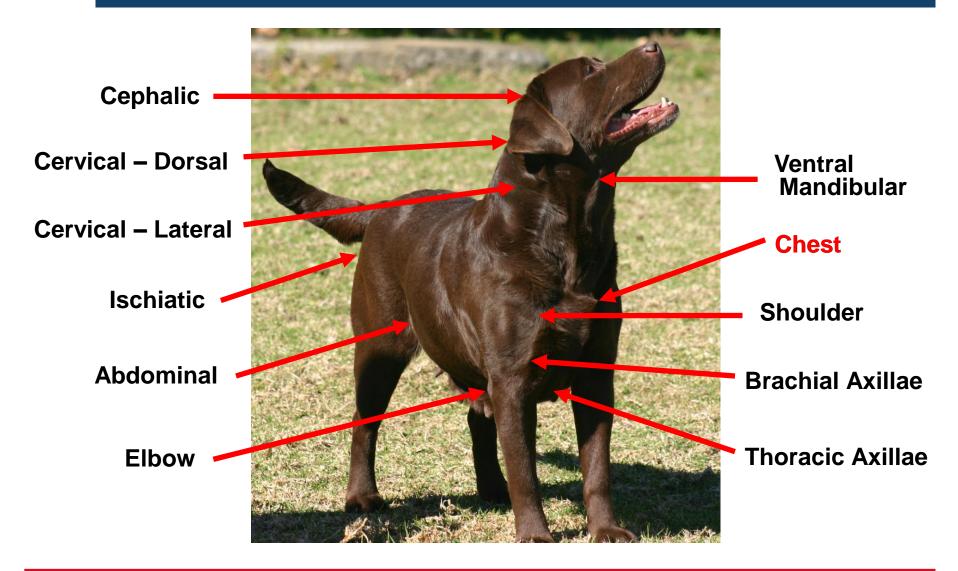
= 30 jumps per dog

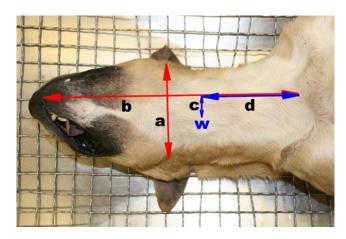

Left monocular vision

(n=10 jumps)

Sensory Jump Test Measurements

Clearance height


(forepaw, hindpaw, lowest body part)



Hair Whorl Characteristics

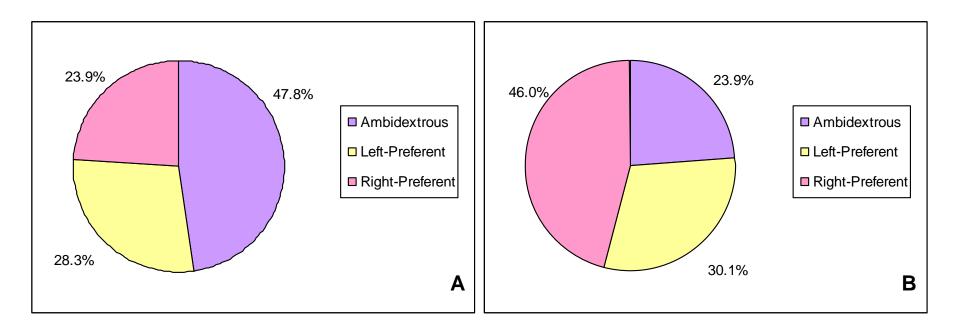
Position

Simple

Tufted

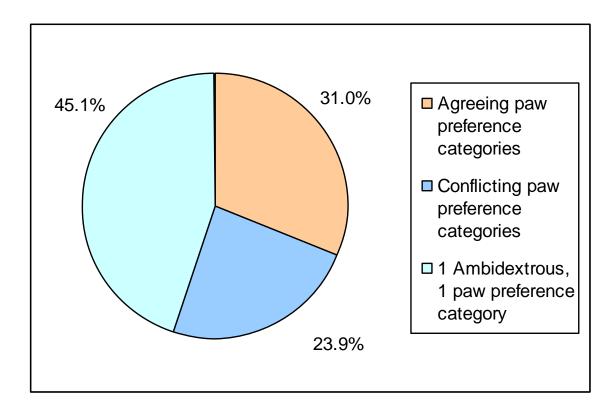
Clockwise

Counter-clockwise

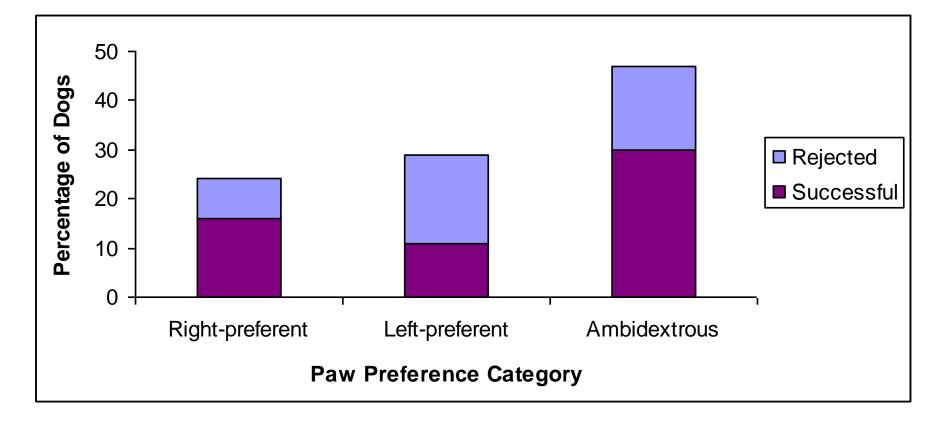


Results - Motor Laterality

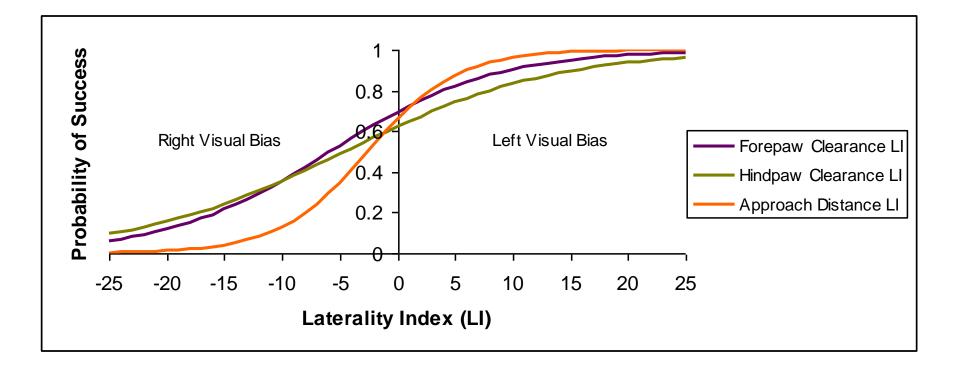
Kong[™] Test


Classification of paw preferences based on the three paw categories;
right-preferent, left-preferent, or ambidextrous.

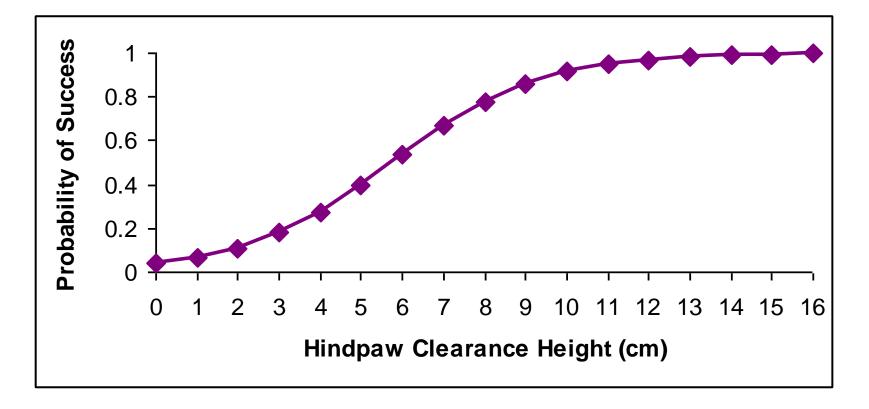
First-stepping Test



 Relationship between paw preference categories as determined by the Kong[™] and First-stepping Tests.



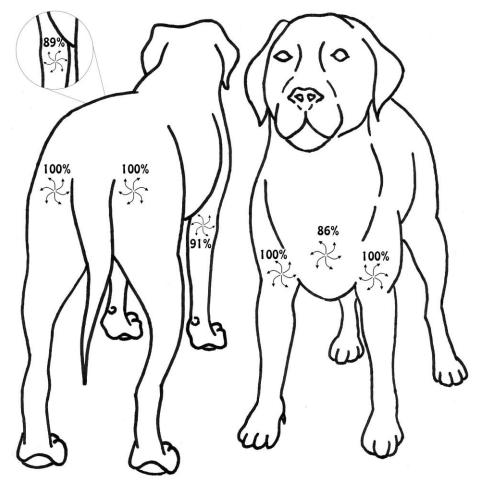
 Distribution of paw preference (Kong[™] Test) and their relative success rate in the Guide Dog Training Program



 Effect of Sensory Jump Test laterality indices (LI) on the probability of success in the Guide Dog Training Program

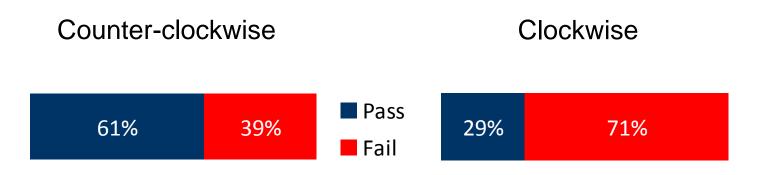
Results - Sensory Laterality

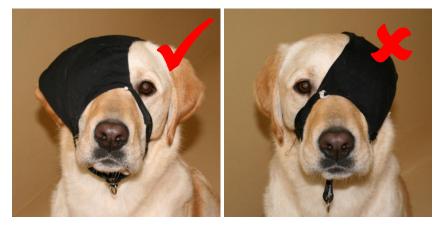
 Effect of hindpaw clearance height on the probability of success in the Guide Dog Training Program


Results - Structural Laterality

Desition	Presence		Classification	
Position	Left	Right	Classification	
Cephalic^	0.9% 0.9%		Simple	
Cervical – Dorsal	0.0%		-	
Cervical – Lateral	0.9% 2.6%		Simple	
Ventral Mandibular*#	11.1%		Simple	
Chest*	92.1%		Tufted	
Brachial Axillae	95.6% 98.3%		Simple	
Thoracic Axillae+	10.8%	14.4%	Simple	
Shoulder	7.0% 7.0%		Simple	
Elbow	92.1% 92.1%		Tufted	
Abdominal	1.8%	0.9%	Simple	
Ischiatic	86.0%	87.7%	Simple	

Based on n = 114, with the exception of n = 113, # n = 108, + n = 111. *Depicts whorls located centrally.


Whorl Direction



Motor Lateralization

Sensory Lateralization

Structural Lateralization

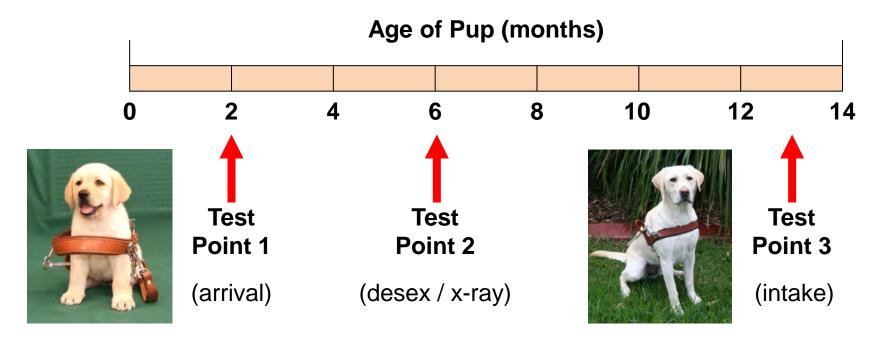
Practical Implications

Success rate of dogs in the Guide Dog Training Program (GDTP) based on the categorization of structural and motor laterality measures

Chest Whorl Direction	Paw Preference Category	Success Rate in the GDTP
Counter-clockwise (n = 77)	Ambidextrous (n = 39)	64.1%
	Right (<i>n</i> = 18)	72.2%
	Left (<i>n</i> = 20)	45.0%
	Ambidextrous (n = 4)	50.0%
Clockwise (n = 14)	Right (<i>n</i> = 3)	33.3%
	Left (<i>n</i> = 7)	14.3%

Note: Success rate is based on 91 dogs that had both a chest whorl present, and participated in the Kong[™] Test.

Practical Implications


Success rate of dogs in the Guide Dog Training Program (GDTP) based on the categorization of structural and sensory laterality measures

Chest Whorl Direction	Hindpaw Clearance Height	Success Rate in the GDTP
Counter-clockwise	> 5 cm (<i>n</i> = 36)	72.2%
(<i>n</i> = 55)	≤ 5 cm (<i>n</i> = 19)	57.9%
Clockwise	> 5 cm (n = 4)	25.0%
(<i>n</i> = 5)	≤ 5 cm (<i>n</i> = 1)	0.0%

Note: Success rate is based on 60 dogs that had both a chest whorl present and participated in the Sensory Jump Test.

- Motor and Structural Lateralization
- > Timeframe

Acknowledgements

> PhD Support

- Kent Williams
- Paul McGreevy
- Peter Thomson

> Funding

Australian Research Council

Conference Sponsorship

- Penn Vet Working Dog Centre

